2024

ENVIRONMENT

State Engineering Services Exams, SSC, PSUs, Banking, RRB and Other Exams

by Mr. B. Singh

www.madeeasypublications.org

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai, New Delhi-110016

Ph.: 9021300500 | E-mail: infomep@madeeasy.in

ENVIRONMENT

for

State Engineering Services Exams, SSC, PSUs, Banking, RRB and Other Exams

© Copyright, by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2022

Second Edition: 2023

© All rights reserved by MADE EASY Publications Pvt. Ltd.. No part of this book may be reproduced or utilized in any form without the written permission from the publisher.

Preface

This comprehensive textbook on **Environment** provides all the requirements of the students, i.e., comprehensive coverage of theory, fundamental concepts and objective type questions articulated in a lucid language. This concise presentation will help the readers grasp the topics of **Environment** with clarity and apply them with ease to solve objective questions quickly.

This book covers the syllabus of States Engineering Services Exams including APPSC, MPSC, MPSC, BPSC, UPPSC; SSC, PSUs, Banking, RRB and other examinations. All the topics are given the emphasis they deserve so that mere reading of the book clarifies all the concepts. The book incorporates theory as well as previous years of various State Engineering Services Examinations, UPSC ESE, etc. It also contains plenty of objective type questions for practice. This book has been very well targeted for aforementioned exams covering all the aspects of subject matter required for these examinations.

We have put-in our sincere efforts to present detailed theory and MCQs without compromising the accuracy of answers. For the interest of the readers, some notes, do you know and interesting facts are given in the comprehensive manner.

Our team has made their best efforts to remove all possible errors of any kind. Nonetheless, we would highly appreciate and acknowledge if you find and share with us any printing and conceptual errors. It is impossible to thank all the individuals who helped us, but we would like to sincerely thank all the authors, editors and reviewers for putting-in their efforts to publish this book.

B. Singh (Ex. IES)

CMD, MADE EASY Group

B. Singh (Ex. IES)

CONTENTS ENVIRONMENT

ECOLOGY AND ECOSYSTEM1				
	Introduction1			
	Ecosystem			
	Characteristics of Ecosystem			
	Biogeochemical Cycling			
	Ecological Succession14			
	Key terms 15 Ecotone 15 Edge Effect 16 Ecocline 16 Biological Spectrum 16 Carrying Capacity of an Ecosystem 16 Habitat 16 Ecological Niche 16 Fundamental Niche 16 Homeostasis 16 Allelopathy 16 BIODIVERSITY 17			
	Introduction17			
_	Levels of Biodiversity17			
	Faunal Diversity17			
	Invertebrates18			

BASICS OF ENVIRONMENT.

Vertebrates	18
Floral Diversity	18
Biodiversity Hotspots	
Biodiversity Hotspots in India	
Megadiverse Countries	
Biodiversity Regions in India	
UNESCO's Natural World Heritage Sites in India	20
Biodiversity Protected Areas	21
National Park	21
National Parks in India	21
Wildlife Sanctuary	22
Wildlife Sanctuaries in India	22
Conservation Reserves	23
Community Reserves	23
Biosphere Reserve	23
Biosphere Reserves in India	23
Wetlands	24
Types of Wetlands	24
Wetlands in India	25
Mangroves	26
Significance of Mangrove Forests	26
Forests	27
Terrestrial Vegetation in India	27
Grassland Ecosystem	28
Savanna	28
Temperate grasslands	28
Biome	28
Biomes in India	28
	0

Biogeographic Regions in India.....28

Conservation of Biodiversity	29
Conservation of biodiversity three basic objective	es29
In-situ conservation	29
Ex-situ conservation	30
International Conventions/ Organisation	s on
Biodiversity	30
Convention on Biological Diversity (CBD)	30
BirdLife International	31
International Union for Conservation of	
Nature (IUCN)	
Convention on International Trade in Endanger Species of Wild Fauna and Flora (CITES)	
Convention on the Conservation of Migratory Species of Wild Animals (CMS)	32
United Nations Environment Programme (UNE	P)32
World Wide Fund for Nature (WWF)	32
Traffic	33
Legislative Steps taken by Union Govern	ment
to conserve Biodiversity	33
Wildlife (Protection) Act, 1972	33
The Biological Diversity Act, 2002	34
National Green Tribunal Act, 2010	34
Wildlife Conservation Projects in India	34
Project Tiger	34
Project Snow Leopard	
Vulture Conservation in India	
Rhinoceros Conservation in India	36
Crocodiles Conservation in India	
Ganges River Dolphin Conservation	36
Project Elephant	37
Indian Organisations & Legislations for	
Conservation of Environment	37
Ministry of Environment, Forest and Climate Change (MoEFCC)	37
Central Pollution Control Board (CPCB) & State	
Pollution Control Boards (SPCBs)	37
Bombay Natural History Society (BNHS)	38
Forest Rights Act (FRA), 2006	38

	Indian Forest Act, 192738
	Environment (Protection) Act. 198638
	Key terms39
	Endemic Species39
	Keystone Species39
	Umbrella Species39
	Foundation Species39
	Indicator Species or Sentinel Species39
	Flagship Species39
	Events/International Days related to
	Environment 40
	World Environment Day40
	Earth Hour40
	Earth Day40
	International Day for Biological Diversity40
	World Wetlands Day40
	World Ozone Day40
	World Forestry Day40
	World Water Day40
F	POLLUTION 41
	Pollution 41
	Pollutant41
	Classifications of Pollution 41
	Air Pollution 41
	Types of Air Pollutants42
	Composition of Primary Air Pollutants42
	Composition of Secondary Air Pollutants44
	Policy Measures to Curb Air Pollution45
	Water Pollution47
_	Sources of Water Pollution47
	Types of Water Pollutants48
	Oil Spills48
	Biomagnification49
	Futrophication 49

	Control measures of water pollution50
	Water Quality Improvement51
	Ocean Acidification51
	Coral Bleaching52
	Soil Pollution53
	Causes of Soil Pollution53
	Different Forms of Soil Pollution54
	Control of Soil Pollution55
	Plastic Pollution55
	Noise Pollution55
	Control of Noise Pollution56
	Bio Pollution56
	Common Biological pollutants are:56
	Solutions of Bio Pollution56
	Radiation Pollution56
	Effect of Radiation Pollution57
	Preventive Measures57
	Ozone Layer57
	Ozone Layer Depletion58
	Ozone Hole58
	Effects of Ozone Holes58
	International Protocols/ Conventions Related to Ozone Laver Depletion 59
	Ozone Layer Depletion59
	Ozone Layer Depletion59
>	Ozone Layer Depletion
	Ozone Layer Depletion

Approaches to Deal with Global Warming	64
Effects of Climate Change	64
International Conventions/Policies on Climate Change	64
Agenda 21	
United Nations Framework Convention on Climate Change (UNFCCC)	64
Important COPs held recently	
Key Highlights	65
Kyoto Protocol	66
Durban Summit	67
India's Nationally Determined Contribution (NDCs) 2021-30	
National Action Plan on Climate Change	68
ENERGY RESOURCES : CONSERVATION	69
CONSERVATION & UTILISATION	69
Introduction	69
Introduction Types of Energy Resources	69
Introduction Types of Energy Resources	69 69 70
Introduction	697071
Introduction	69707171
Introduction	6970717171
Introduction	6970717171
Introduction	6971717172
Introduction	697071717272
Introduction	707171727272
Introduction	717172727272

International Solar Alliance (ISA)	.76
Jawaharlal Nehru National Solar Mission (JNNSM)	.77
Wind Energy	77
Wind Energy Conversion System (WECS)	.77
High Wind Potential Regions and Areas	.78
Advantages of Wind Energy	.78
Limitations of Wind Energy	.78
National Offshore Wind Energy Policy, 2015	.79
Tidal Energy	79
Advantages of Tidal Energy	.79
Limitations of Tidal Energy	.79
Tidal Power Development in India	.80
Ocean Thermal Energy Conversions (OTEC)	80
Location of OTEC Plants	.80
Development of OTEC in India	.80
Advantages of OTEC	.80
Limitations of OTEC	.81
Wave Energy	81
Wave Energy Potential of Indian Coast	.81
Advantages of Wave Energy	.81
Limitations of Wave Energy	.82
Geothermal Energy	82
Geothermal Resources	.82
Geothermal Sites in the World	.83
Geothermal Resources in India	.83
Advantages of Geothermal Energy	.84
Limitations of Geothermal Energy	.85
Utilisation of Geothermal Energy	.85
Biomass Energy	85
Biomass Resources:	.85
Biomass Power Conversion Technology	.86
Biomass Energy Programmes in India	.88
Riogas	89

Ethanol from Biomass	91
Advantages of Biomass Energy	91
Limitations of Biomass Energy	91
Biofuels	92
Types of Biofuels	92
Generations of Biofuels	92
Biodiesel	92
Production of Biodiesel from Jatropha	92
National Policy on Biofuel, 2009	93
Benefits of Biofuel Crops	93
Fuel Cells	93
Principle of Operation of a Fuel cell	93
Advantages of Fuel Cell Power Plants	94
Hydrogen	94
National Hydrogen Energy Road Map	95
Characteristics and Applications of Hydrogen	95
Gas Hydrate	95
Hydro Energy	95
Advantages of Hydro Energy	
Limitations of Hydro Energy	96
Other types of Energy Resources	96
Coal	97
Petroleum	97
Natural Gas	97
Nuclear Energy	
Major Types of Nuclear Reactors	
Advantages of Nuclear Energy	
Limitations of Nuclear Energy	100
International Atomic Energy Agency (IAEA)	101
Energy Conservation	101
Major Energy Conservation Techniques	
Energy Conservation in India	

DISASTERS AND THEIR MANAGEMENT103		
Introduction	103	
Classification of Disasters	103	
Earthquake	103	
Tropical Cyclone	105	
Floods	106	
Tsunami	106	
Droughts	107	

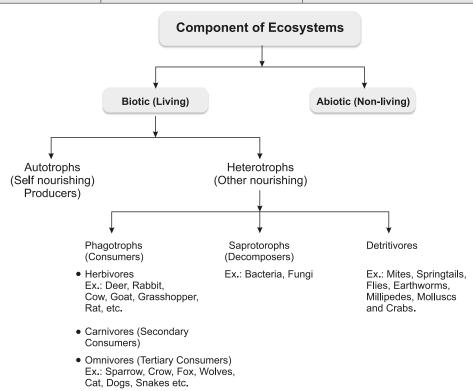
	Landslides	108
	Soil Conservation Methods	109
	Industrial Disaster	110
	Biological Disaster	110
	Nuclear Hazards	110
•	Disaster Management	110
	National Disaster Management Authority (NDMA)	
	National Disaster Management Authority	110
•	National Disaster Management Authority (NDMA)	110

Previous Years' Questions & Practice Questions

112 - 175

Previous Years' Questions and Practice Questions......112-175

Basics of Environment, Ecology and Ecosystem



Introduction

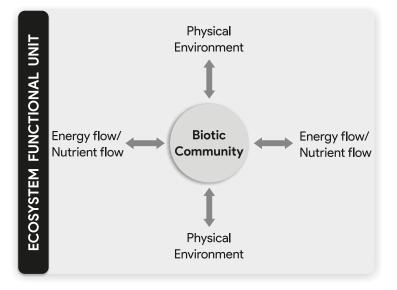
Ecology can be defined as the study of relationships between organism and their environment it also refer as interaction of an organism with its environment and interaction with member of same species as well as other species. The term was coined by a German Biologist Ernst Haeckel in 1866. The world "Oikos' means home + "logy" means study together form Ecology.

Environment is the surrounding in which the organisms live whereas the ecosystem involves the interaction between the environment and the organisms living in it.

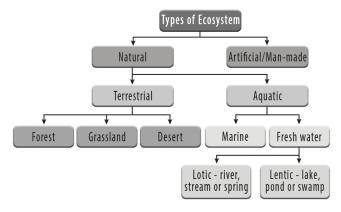
Ecology	Environment	Ecosystem
Ecology includes the study	Environment' means	An ecosystem is a functional unit of
of relationships between	surrounding in which	nature where a community of living
living organisms and their	organisms live. It is the	organisms interact among themselves
environment.	sum total of conditions that	and with the surrounding physical
	surround us at a given point in	environment. An ecosystem is a sub-part
	time and space.	of Ecology.

Ecosystem

An ecosystem is a complex set of relationship among the living resources, habitats, and residents of an area. It includes plants, trees, animals, fishes, birds, micro-organisms, water, soil, people, etc. Everything that lives in an ecosystem is dependent on the other species and elements that are also part of ecological community.

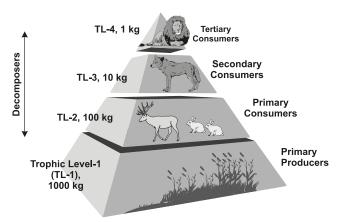

Ecosystems include living organisms, the dead organic matter produced by them, the abiotic environment within which the organisms live and exchange elements (soils, water, atmosphere), and the interactions between these components.

When an ecosystem is healthy (i.e., sustainable) it means that all the elements live in balance and are capable of reproducing themselves.


The term 'ecosystem' was first coined by A.G. Tansley in 1935.

The concept of ecosystem was initially given by E.P. Odum who is widely considered as "Father of ecosystem/ ecology".

Ecosystem is a functional unit which as biotic community of organism integrated with the physical environment (which comprise of the abiotic components) through the energy and nutrient flows.


Types of Ecosystem

Characteristics of Ecosystem

Ecosystem is a subset of Biosphere, wh

A. Structure of Ecosystem

Ecosystem is a subset of Biosphere, wherein various species, their populations and communities interact with each other along with non-living things like land, sunlight, wind, humidity, etc., called as abiotic elements, whereas, the living things are called as biotic elements.

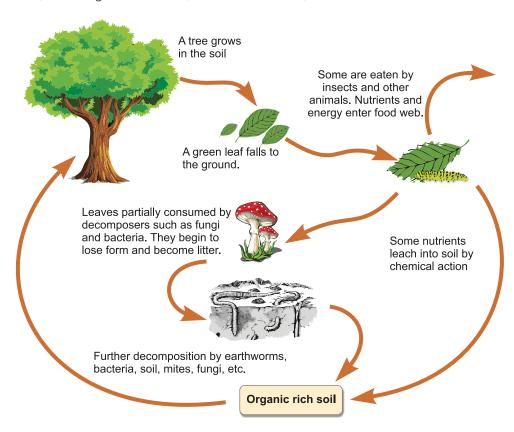
B. Functions of Ecosystem

The ecosystem has some functional properties which keep all the components interlinked and running together. The components of the ecosystem are seen to function as a unit when the below-mentioned aspects are considered:

- Productivity
- Decomposition
- Energy Flow
- Nutrient Cycling

Productivity

Solar Energy is necessary for any ecosystem to function. Primary production is defined as the amount of biomass or organic matter produced per unit area over a time-period by plants during photosynthesis. The rate of biomass production is called productivity.


Gross primary productivity of an ecosystem is the rate of production of organic matter during photosynthesis. A considerable amount of GPP is utilised by plants in respiration. Gross primary productivity minus respiration losses (R), is the net primary productivity (NPP).

Net primary productivity is the available biomass for the consumption to heterotrophs (herbivores and decomposers). Consumers define secondary productivity as the rate of formation of new organic matter.

Primary productivity depends on the plant species inhabiting a particular area. It also depends on a variety of environmental factors including availability of nutrients and photosynthetic capacity of plants. Therefore, it varies in different types of ecosystems. The annual net primary productivity of the whole biosphere is approximately 170 billion tons (dry weight) of organic matter. Of this, despite occupying about 70 per cent of the surface, the productivity of the oceans are only 55 billion tons. Rest of course, is on land.

Decomposition

Earthworms help in the breakdown of complex organic matter as well as in loosening of the soil. Similarly, decomposers break down complex organic matter into inorganic substances like carbon dioxide, water and nutrients. The process is called decomposition. Dead plant remains such as leaves, bark, flowers and dead remains of animals, including faecal matter, constitute detritus, which is the raw material for decomposition.

Decomposition cycle in a terrestrial ecosystem

Humification and mineralisation occur during decomposition in the soil. It leads to accumulation of a dark coloured amorphous substance called humus that is highly resistant to microbial action and undergoes decomposition at an extremely slow rate. Being colloidal in nature, it serves as a reservoir of nutrients. Some microbes further degrade the humus and release of inorganic nutrients occur by the process known as mineralisation. Decomposition is largely an oxygen-requiring process.

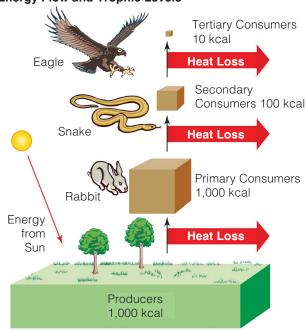
Energy Flow

All the components of an ecosystem are constantly interacting with each other. These interactions lead to the growth and regeneration of its plants and animal species for which energy is required. Sun is the ultimate source of energy for all the ecosystems in the world, except for the deep sea hydrothermal ecosystems.

Only 50 percent of the solar radiation is Photosynthetically Active Radiation (PAR). The producers capture only 2-10 percent of this PAR and this small amount of energy sustains the entire living world. This energy goes through different organisms occupying trophic levels in an ecosystem.

Photosynthetically Active Radiation (PAR) is the amount of light available for photosynthesis, which is light in the 400 to 700 nanometer wavelength range. PAR changes seasonally and varies depending on the latitude and time of day.

It is needed for photosynthesis and plant growth. Higher PAR promotes plant growth. Monitoring PAR is important to ensure plants are receiving adequate amount of light for this process.

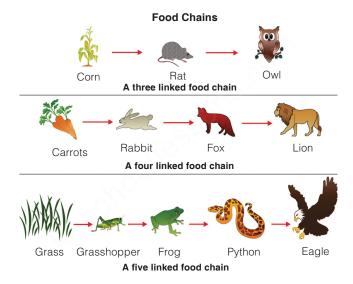

Trophic Levels

A trophic level is a step in a food chain of an ecosystem. Based on the feeding behavior, the organisms are classified into different trophic levels. Thus, trophic levels are the feeding positions of all organisms in a specific ecosystem.

At the first trophic level, primary producers like green plants, algae, and some bacterias use solar energy to produce organic plant material through photosynthesis. The second trophic level is occupied by Herbivores, animals that feed solely on plants.. Similarly, the third trophic level is occupied by Predators who eat herbivores.

The highest amount of energy is concentrated in the first trophic level, subsequently dispersing into organisms of different trophic levels. The amount of energy decreases as one moves higher up in the trophic level in an ecosystem.

Energy Flow and Trophic Levels


On an average, about 10 percent of net energy production at one trophic level is passed on to the next level. Processes that reduce the energy transferred between trophic levels include respiration, growth and reproduction, defecation, and non-predatory death (organisms that die but are not eaten by consumers).

As there is high energy loss at subsequent trophic levels, most terrestrial ecosystems have no more than five trophic levels and marine ecosystems generally have no more than seven. This difference between terrestrial and marine ecosystems is likely due to differences in the fundamental characteristics of land and marine primary organisms. In marine ecosystems, microscopic phytoplankton carries out most of the photosynthesis that occurs, while plants do most of this work on land.

Phytoplankton are small organisms with extremely simple structures, so most of their primary production is consumed and used for energy by grazing organisms that feed on them. In contrast, a large fraction of the the land plants produce, such as roots, trunks, and branches, cannot be used by herbivores for food, so proportionately less of the energy fixed through primary production travels up the food chain

Food Chains

All the organisms need energy to grow, move and reproduce. For this purpose, smaller insects eat plants, bigger animals eat smaller insects and so on. This feeding relationship forms a food chain in an ecosystem. Thus, food chain is a linear sequence of organisms through which transfer of energy and nutrients takes place. The energy and nutrients flow in the form of food from organism to organism by eating and being eaten.

Each step of the food chain is known as Trophic level. As we know that at each transfer, a large amount of energy is lost in the form of heat and used up in respiration or metabolism. Each chain has only four to five such trophic levels as after that very little energy is left to support any life form.

As we move from the first level to the next, there is a progressive decrease in numbers of organisms occupying that particular trophic level and a progressive increase in the size of predators. As one moves higher up the trophic level, less energy is available. This requires an organism to eat more to get the same amount of energy as compared to the lower trophic level organism.

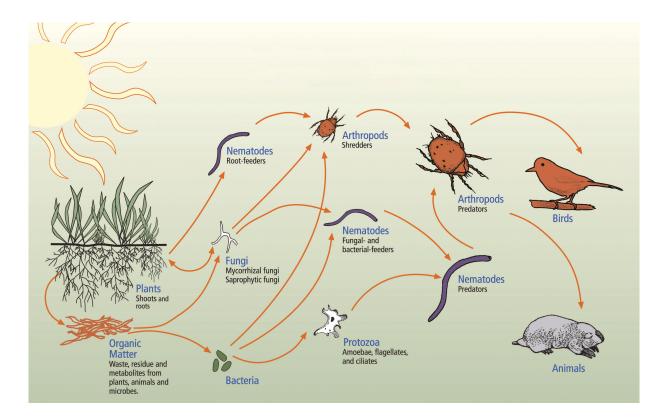
Also, a particular organism need not occupy a unique trophic level in a food chain. Many Omnivores can be at the second trophic level surviving directly by eating the plants or higher up the order, eating other animals. Example: Man.

Also, in an ecosystem, there may be more than one food chain

Grass \rightarrow Rabbit \rightarrow Fox-Wolf \rightarrow Tiger

Grass \rightarrow Grasshopper \rightarrow Frog \rightarrow Snake \rightarrow Hawk

There are two types of food chains:


Grazing Food Chains

This type of food chain is more prevalent in those ecosystems where a substantial part of the net primary production is grazed on by herbivores. Thus, there is enough energy to support the higher trophic level and in turn a food chain. It starts from a green plant base, goes to grazing herbivores and on to carnivores.

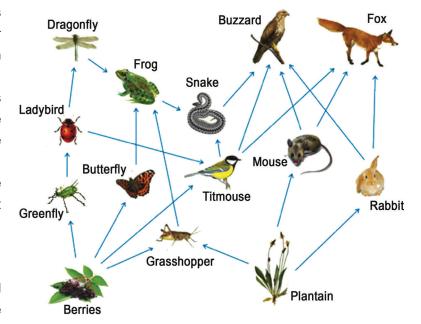
Detritus Food Chains

This type of food chain starts with a dead organic matter which is decomposed by microorganisms, which in turn are eaten by other organisms. Clearly, it is less dependent on direct solar energy and more on the supply of organic matter produced by another ecosystem.

Food Web

Food chain follows a single path as animals eat each other. In natural environment or an ecosystem, the relationships between the food chains are inter-connected. These relationships are very complex, as one organism may be a part of multiple food chains. Hence, a web like structure is formed in place of a linear food chain. The web like structure if formed with the interlinked food chain and such matrix that is interconnected is known as a food web.

Food web as interconnected Food chains


Although it looks complex, it is just several food chains joined together. Here are some of the food chains in this food web:

Berries → Butterfly → Frog → Snake

 $\mathsf{Berries} \to \mathsf{Greenfly} \to \mathsf{Ladybird} \to \mathsf{Dragonfly} \to \mathsf{Frog} \to \mathsf{Snake} \to \mathsf{Buzzard}$

Plantain \rightarrow Rabbit \rightarrow Fox

Plantain → Mouse → Buzzard

Previous Years' Questions & Practice Questions

- **1.** Which recent International agreements have a bearing on Disaster Management?
 - (a) Sendai Framework
 - (b) Sustainable Development Goals 2015-2030
 - (c) Pairs Agreement on Climate Change
 - (d) All of the above

[APPSC (AEE): 2016]

Ans. (d)

- **2.** At which stage of disaster management cycle, would "response" be the main activity?
 - (a) Pre-disaster
- (b) Disaster
- (c) Post-disaster
- (d) Devastating

[APPSC (AEE): 2016]

Ans. (c)

- **3.** As per the High Powered Disaster Management Committee Report, 2001, in terms of vulnerability, as L2 type indicates manageability with resources at
 - (a) Village level
- (b) Taluk/Mandal level
- (c) District level
- (d) State level

[APPSC (AEE): 2016]

Ans. (b)

- **4.** Which of the following agencies in India provides financial support for the promotion of alternative energy usage?
 - (a) CERN
- (b) NCERT
- (c) SDBI
- (d) IREDA

[BPSC (AE): 1995]

Ans. (d)

5. Which of the following air pollutants are responsible for acid rain within and downwind area of major industrial emission?

- (a) H₂S and oxides of Nitrogen
- (b) SO, and oxides of Nitrogen
- (c) CO, and H,S
- (d) CH₄ and H₂S

[BPSC (AE): 1995]

Ans. (b)

- **6.** Which of the following is going to introduce "Green Toilets"?
 - (a) Air India
- (b) Delhi Metro
- (c) Indian Railways (d) Karnataka Roadways

[BPSC (AE): 1995]

Ans. (c)

- **7.** Which of the following contribute most to electricity generation in India?
 - (a) Thermal sources of energy
 - (b) Hydroelectric sources of energy
 - (c) Nuclear sources of energy
 - (d) Non-conventional sources of energy

[BPSC (AE): 1995]

Ans. (a)

- **8.** What is carbon footprint?
 - (a) The total set of greenhouse gas emission caused by an organization, person or event
 - (b) The total amount of carbon dioxide emission caused by an organization, person or event.
 - (c) A tradable certificate or permit representing the right of emitting one tonne of carbon dioxide.
 - (d) None of the above

[BPSC (AE): 1995]

Ans. (b)

- **9.** Which of the following is not a fossil fuel?
 - (a) Petroleum
- (b) Uranium
- (c) Natural gas
- (d) Coal

[BPSC (AE): 2001]

Ans. (b)

- **10.** The increased content of carbon dioxide in the atmosphere causes
 - (a) Skin cancer
 - (b) Respiratory diseases
 - (c) Global warming
 - (d) Smog

[BPSC (AE): 2001]

Ans. (c)

- 11. The most polluted river of India is
 - (a) Ganga
- (b) Sutlej
- (c) Tapti
- (d) Mahanadi

[BPSC (AE): 2001]

Ans. (a)

- **12.** If all the plants of the world die, all the animals will also die due to the shortage of
 - (a) Nitrogen
 - (b) Oxygen
 - (c) Carbon monoxide
 - (d) Carbon dioxide

[BPSC (AE): 2001]

Ans. (b)

- **13.** Which of the following sources of energy is different from others?
 - (a) Gobar gas
- (b) Bitumen
- (c) Anthracite
- (d) Coke

[BPSC (AE): 2001]

Ans. (a)

- **14.** An instrument that measures air pressure is
 - (a) Anemometer
 - (b) Thermometer
 - (c) Barometer
 - (d) Lactometer

[BPSC (AE): 2012]

Ans. (c)

- **15.** What type of energy radiates from hot objects and can be seen by cameras?
 - (a) Infrared ray
 - (b) Ultraviolet ray
 - (c) X-ray
 - (d) Gamma ray

[BPSC (AE): 2012]

Ans. (a)

- 16. Fly-ash', a well-known pollutant is produced by
 - (a) Oil refinery
 - (b) Fertilizer plant
 - (c) Cement plant
 - (d) Thermal power plant

[BPSC (AE): 2017]

Ans. (d)

- 17. Biodegradables are the substances
 - (a) That are inert
 - (b) That persist in environment for a long time
 - (c) That may harm the various members of the ecosystem
 - (d) That are broken down by biological processes

[BPSC (AE): 2018]

Ans. (d)

- **18.** Which of the following processes is used to treat contaminated media by altering environmental conditions to simulate growth of microorganism?
 - (a) Bioaccumulation
 - (b) Bioaugmentation
 - (c) Biodegradation
 - (d) Bioremediation

[BPSC (AE): 2018]

Ans. (d)

- **19.** The headquarters of "International Solar Alliance" is located in
 - (a) Paris
- (b) Bonn
- (c) Haryana
- (d) Bihar

[BPSC (AE): 2018]

Ans. (c)