

MECHANICAL ENGINEERING

CONVENTIONAL Practice Sets

CONTENTS

INDUSTRIAL ENGINEERING

1.	Break Even Analysis	2 - 12
2.	Inventory Control	13 - 26
3.	PERT and CPM	27 - 45
4.	Forecasting	46 - 56
5.	Linear Programming	57 - 68
6.	Transportation and Assignment Models	69 - 85
7.	Work Study and Queuing Theory	86 - 95
8.	Statistical Quality Control	96 - 104
9.	Line Balancing and Sequencing	105 - 114
10.	Production Planning and Control	115 - 121
11.	Maintenance Engineering	122 - 130

Break Even Analysis

Practice Questions: Level-I

Q1 A company manufactures pocket transistors. The details of its monthly expenditure are as follow:

Direct material - ₹10000

Direct labour - 200 hours at the rate of ₹5 per hour

125 hours at the rate of ₹4 per hour

Applied overheads (factory overheads) = 10% of prime cost

Other overheads = 10% of works cost

Profit = 20% of total cost

Number of units manufactured per month = 200 Estimate the selling price unit.

Solution:

Prime cost = Cost of direct material + Cost of direct labour + Direct expenses =
$$10000 + 200 \times 5 + 125 \times 4 = ₹11500$$

Factory overheads = $\frac{10}{100} \times 11500 = ₹1150$

Works cost (Factory cost) = Prime cost + Factory overheads = $11500 + 1150 = ₹12650$

Other overheads = $\frac{10}{100} \times 12650 = ₹1265$

Total cost = ₹12650 + ₹1265 = ₹13915

Profit = $\frac{20}{100} \times 13915 = ₹2783$

Selling price for 200 units = $13915 + 2783 = ₹16698$

Selling price per unit = $\frac{16698}{200} = ₹83.49$

Q2 A standard machine tool and an automatic machine tool are being compared for the production of a component. Following data refers to the two machines.

	Standard Machine tool	Automatic Machine tool
Setup time	30 min.	2 hours
Machining time per piece	22 min.	5 min
Machine rate	Rs. 200 per hour	Rs. 800 per hours

What is the breakeven production batch size above which the automatic machine tool will be economical to use?

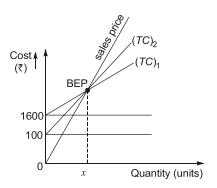
Solution:

Total cost of x_1 component by using standard machine tool

$$(TC)_1 = \left(\frac{30}{60} + \frac{22x_1}{60}\right) \times 200 = 100 + \frac{2200}{30}x_1$$

Total $\cos t x_2$ component by using automatic machine tool.

$$(TC)_2 = \left(2 + \frac{5}{60} \times x_2\right) \times 800$$
$$= 1600 + \frac{2000}{30} x_2$$


Let break even quantity be x.

At break even point,

$$(TC)_1 = (TC)_2$$

$$\therefore 100 + \frac{2200}{30}x = 1600 + \frac{2000}{30}x$$
or
$$6.667x = 1500$$

$$\therefore x = 225$$

- Q3 A factory producing only one item of selling price ₹ 13.5 per piece and has fixed cost equal to ₹ 80,000 and variable cost ₹ 8.5 per piece find:
 - (i) Break even-point
 - (ii) Number of pieces to be produced to earn the profit of ₹ 15,000.
 - (iii) The profit, if 30,000 pieces are produced and sold.

Solution:

Given data: Selling prices, S = ₹ 13.5 per unit fixed cost, FC = ₹ 80000; Variable cost, V = ₹ 8.5 per unit Let the quantity produced is Q

$$\therefore \qquad \text{Total cost, } TC = FC + VC$$

$$= 80,000 + 8.5 Q$$

$$\text{Sales, } S = Q \times 13.5 = 13.5 Q$$

(i) At Break even point

Sales = Total cost
13.5
$$Q = 80,000 + 8.5 Q$$

5 $Q = 80,000$
 $Q_{BE} = 16,000 \text{ Units}$

(ii) No. of units for ₹ 15,000 profit

Profit = Sales - Total cost

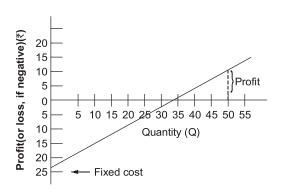
$$15000 = 13.5 Q - 80,000 - 8.5 Q$$

 $5 Q = 15,000 + 80,000$
 $Q = 19,000 \text{ units}$

(iii) Profit when 30000 units produced

Q4 The fixed cost of ₹24000 and a break-even-quantity of 34000 unit are estimated for a productions. Draw profit graph and calculate profit at a sales volume of 50000 units.

Solution:


As we know,

$$S = F + V + P$$

At BEP, P = 0

At BEP,
$$P=0$$

$$x_{\rm BEP}=34000~{\rm unit}$$

$$sx_{\rm BEP}-vx_{\rm BEP}=F$$

$$s-v=\frac{F}{x_{\rm BEP}}=\frac{24000}{34000}=0.706$$
 Profit, when $x=50000$,
$$P=(s-v)x-F=0.706\times50000-24000$$

= ₹11300

Q.5 Following is information regarding a manufacturing enterprises:

Total fixed cost = ₹ 4,500

Total variable cost = ₹ 7,500

Total sales = ₹ 15,000

Units Sold = 5000

Find out:

- (i) Break even point in units
- (ii) Margin of safety

(iii) Profit

(iv) Volume of sales to earn a profit of ₹ 6000.

Solution:

(i) Break even points in units

Sale price,
$$S = \frac{15000}{5000} = ₹3$$
 per unit

Variable price, $V = \frac{7500}{5000} = ₹1.5$ per unit

Let Q is units of break even point

$$S.Q. = F.C. + V.Q.$$
 at BEP
 $3 Q = 4500 + 1.5 Q$
 $1.5 Q = 4500$
 $Q = 3000 \text{ units}$

- (ii) Margin of safety
 - (a) In terms of unit produced = 5000 3000 = 2000 units

(iv) Volume of sales to earn profit of ₹ 6000

$$\therefore 6000 = Q \times 3 - (4500 + 1.5 Q)$$

$$10500 = 1.5 Q$$

$$Q = 7000 \text{ Units}$$

Q.6 A machine shop manager has two machine that can do this same operation. The setup cost and variable costs are as

Machine	Setup Cost (₹)	Variable cost/unit (₹)
Α	80	2.4
В	800	0.9

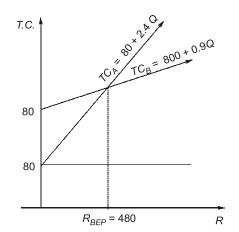
A decision has to be taken to select the machine A or B to minimise the total cost of production when an order comes.

- (i) Determine the total cost equation for two machines
- (ii) At what volume of production do machine A or B break-even?
- (iii) What in the decision rule?

Solution:

Let Q denotes the volume of production

(i) Total cost equation


Total cost equation for
$$A$$
, $TC_A = 80 + 2.4 Q$
Total cost equation for B , $TC_B = 800 + 0.7 Q$

(ii) The break even for machines

$$TC_A = TC_B$$

 $80 + 2.4 Q = 800 + 0.9 Q$
 $1.5 Q = 800 - 80 = 720$
 $Q_{BEP} = 480 \text{ Units}$

- (a) if the production is less than 480 units select machine A
- (b) if the production is more than 480 units, select machine B

An analysis of a company reveals the following sales and cost information: Current capacity = 1,00,000 units. At current level of operations, its margin of safety is 5% of its break-even point, whereas contribution margin P/V ratio is 25% and unutilised capacity is 10,000 units. For the sale price of ₹ 40 per unit, determine the following: (i) Break-even point in sales volume, (ii) Fixed costs, (iii) Variable costs per unit, (iv) Margin of safety in units

Solution:

and

Given: Current capacity = 1,00,000 units, (P/V) ratio = 25%, Sale price (S) = ₹ 40/ unit

Margin of safety = 5% of break even point

Margin of safety = Actual sale – Break even sales = $\frac{5}{100} \times$ Break even sale

Actual sales = $1.05 \times \text{break-even sales}$

actual sales = $(1,00,000 - 10,000) \times 40 = ₹36,00,000$

(i) Break-even point in sales volume = $\frac{36,00,000}{1.05}$ = `34,28,571.4

(ii) Fixed costs = Break even sales × P/V ratio= ₹34,28,571.7 × 0.25 = ₹8,57,142.85

(iii) $P/V \text{ ratio} = \frac{\text{Sales - variable cost}}{\text{sales}} \Rightarrow 0.25 = \frac{\text{Sales - variable cost}}{\text{sales}}$

Variable cost = 0.75 × sales per unit = 0.75 × 40 = ₹ 30 per unit

(iv) Break-even sales (in units) = $\frac{8,57,142.85}{40-30}$ = 85715 units Then margin of safety = $0.05 \times 85715 = 4285.75$ units

Practice Questions: Level-II

- Q8 The P/V ratio of Alpha Pvt. Ltd. is 50% and Margin of Safety is 40%. The company sold 500 units for ₹500000. Calculate:
 - (i) Break even point (in units)
 - (ii) Fixed cost
 - (iii) Profit earned at present level of sales.
 - (iv) Sales in units to earn a profit of 10% on sales.
 - (v) Units to be sold to earn a target net profit of ₹ 500000 for the next year.
 - (vi) Selling price per unit if BEP is to be brought down by 50 units.

Solution:

Selling price per unit,

$$s = \frac{500000}{500} = 1000 \text{ per unit}$$

$$\left(\frac{P}{V}\right)_{\text{ratio}} = \frac{s - v}{s} \times 100$$

$$50 = \frac{1000 - v}{1000} \times 100$$

Variable cost per unit, v = ₹500

(i) Given: Total sale, $x = x_{BFP} + 0.4x$,

$$x_{\text{BEP}} = 0.6x = 0.6 \times 500$$

$$x_{RED} = 300 \text{ units}$$

$$x_{\text{BEP}} = \frac{F}{s - v}$$

$$300 = \frac{F}{1000 - 500}$$

Fixed cost, *F* = ₹150000

(iii) Sale in units,

$$x = \frac{P + F}{s - v}$$

$$500 = \frac{P + 150000}{1000 - 500}$$

Profit at present level of sales, *P* = ₹100000

(iv)
$$x' = \frac{P' + F}{s - v} = \frac{0.1sx' + 150000}{1000 - 500} = \frac{0.1 \times 1000x' + 150000}{500}$$

$$500x' = 100x' + 150000$$

$$x' = 375 \text{ units}$$

(v)
$$x'' = \frac{P'' + F}{s - v} = \frac{500000 + 150000}{1000 - 500} = 1300 \text{ units}$$

(vi)
$$(x_{BEP})_{new} = (x_{BEP})_{old} - 50 = 300 - 50 = 250 \text{ units}$$

$$(x_{\text{BEP}})_{\text{new}} = \frac{F}{s_{\text{new}} - v}$$

$$\Rightarrow 250 = \frac{150000}{s_{\text{new}} - 500}$$