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CHAPTER

Basics of Vectors

11 VECTORS AND SCALARS

Many physical quantities are completely described by a numerical value alone and are added according
to the ordinary rules of algebra. As an example the mass of a system is described by saying that itis 5 kg. If two
bodies one having a mass of 5 kg and the other having a mass of 2 kg are added together to make a composite
system, the total mass of the system becomes 5 kg + 2 kg = 7 kg. Such quantities are called scalars.

So, a scalar is any positive or negative physical quantity that can be completely specified by its magnitude.
Other examples of scalar quantities are length, mass and time.

While the complete description of certain physical quantities requires a
numerical value as well as a direction in space. Velocity of a particle is an

example of this kind. The magnitude of velocity is represented by a number

Resultant

such as 5 m/s and tells us how fast a particle is moving. But the description of velocity

Second

velocity becomes complete only when the direction of velocity is also specified. velocity

We can represent this velocity by drawing a line parallel to the velocity and

putting an arrow showing the direction of velocity.

First velocity
Further, if a particle is given two velocities simultaneously, its resultant velocity is different from the two
velocities and is obtained by using a special rule known as triangle law.

The physical quantities which have magnitude and direction and which can be added according to the
laws of vector addition are called vector quantities. Other examples of vector quantities are force, linear momentum,
electric field, magnetic field etc.

1.2 EQUALITY OF VECTORS

Two vectors (representing two values of the same physical quantity) are called equal if their magnitudes
and directions are same. Thus, a parallel translation of a vector does not bring about any change in it.

MRDE ERSYH www.madeeasypublications.org SOMJ hﬁignﬁfi ME
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1.3 ADDITION OF VECTORS

The triangle rule of vector addition is already described above. If &
and p are two vectors to be added, a diagram is drawn in which the tail of b
coincides with the head of 3. The vector joining the tail of & with the head of b

is the vector sum of & and b.
Figure shows the construction. The same rule may be stated in a slightly
different way by parallelogram law.

a
In parallelogram law we draw vectors & and b with both the tails coinciding as shown in figure. Taking
these two as the adjacent sides we complete the parallelogram. The diagonal through the common tails gives the
sum of the two vectors.

Suppose the magnitude of &= a and that of p = p . If the angle between & and b is®, itis easy to see
from figure that
AD? = (AB + BE) + (DE)? P
(a + bcosB)? + (bsing)?
a° + 2ab cosl + b?

Thus, the magnitude of 3 + p is

Ja? + b2 +2abcos

DE bsind

[ts angle with 3 is here tang = —=—"—"7"—
gewrh a lsaw ’ “= AE " a+bcosb

Special cases:
(a) When two vectors are acting in same direction,

then, 0=0
‘é’Lb‘ = Ja®+b*+2ab=a+b
and N L1
= 2t bcos0°
= o=0

Thus, the magnitude of sum of vectors g and b is equal to the sum of magnitudes of two vectors acting

in same direction and their resultant acts in direction of 3 and p.

(b) When two vectors acts in opposite directions:

Then, 0 = 180°
‘5”9 = Ja®+b*-2ab=a-b
and I b xsin(180°) _
a+bxcos(180°)
= o = 0°0r180°

—

Thus, the magnitude of sum of the vectors & and (- b)) is equal to the difference of magnitudes of two
vectors and their resultant acts in direction of bigger vector.

MBDE ERSY www.madeeasypublications.org Solvet’:{ hﬁ?&ﬁfﬁ ME
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1.4 MULTIPLICATION OF A VECTOR BY A NUMBER

Suppose & is a vector of magnitude a and k is a number. We define the vector b= k3 as a vector of
magnitude |ka|. If k is positive the direction of the vector b = k3 is same as that of 8. If k is negative, the

direction of b is opposite to &. In particular, multiplication by (-1) just inverts the direction of the vector. The
vectors g and — & have equal magnitudes but opposite directions.
If & is a vector of magnitude aand (; is a vector of unit magnitude in the direction of &, we can write

a=al.

1.5 SUBTRACTION OF VECTORS

Let @ and b be two vectors. We define 3 — b as the sum of the vector & and the

vector (—5) .To subtract b from &, invert the direction of b and add to &. JARN ;

1.6 RESOLUTION OF VECTORS

Figures shows a vector 3 = OA in the X-Y plane drawn from the origin O. The length OB is called the

projection of OA on X-axis. Similarly OC is the projection of OA on Y-axis. According to the rules of vector
addition v
d = OA=0B+0C

We have resolved the vector & into two parts, one along OX and

the other along QY. The magnitude of the part along OX is OB = a coso o S s A
and the magnitude of the part along OY is OC = acosp. If 7 and ] denote i 5
vectors of unit magnitude along OX and OY respectively, we get ’QBG
O - B X

OA = acosaiandOC =acosB]
So, that, 4 = acoso.i +acosBj
If the vector g is not in the X-Y plane, it may have nonzero projections along X, Y, Z axes and we can

resolve it into three parts i.e. along the X, Y and Z axes. If o, B, v be the angles made by the vector & with the
three axes respectively, we get

4 = acoso. i +acosBj +acosyk
where i, ] and k are the unit vectors along X, Y and Z axes

respectively. The component of vector g along direction making angle 6 with it

is a cos® which is the projection of g along the given direction. ~ 5550
MEDE ERSYH www.madeeasypublications.org 301veg hﬁiﬁinvﬁfg; ME
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EXAMPLE : 1.1 A force of 10.5 N acts on a particle along a direction making an angle of 37° with
the vertical. Find the component of the force in the vertical direction?

Solution:
The component of the force in the vertical direction will be

F, Fcost = (10.5N) (cos37°)

F, = 10.5x%=8.4ON

1.7 DOT PRODUCT OR SCALAR PRODUCT OF TWO VECTORS

The dot product (also called scalar product) of two vectors & and b is defined as

3.b = abcosb

b
The dot product is commutative and distributive.
3.5 =b-3
d(b+c)=ab+ac 8
a
EXAMPLE : 1.2 The work done by a force F during a displacement 7 is given by F-F. Suppose

a force of 12 N acts on a particle in vertically upward direction and particle is
displaced through 2 m in the vertically downward direction. Find the work done
by the force during this displacement?

Solution:

The angle between the force F andthe displacement 7 is 180° . Thus, the work done is

W= F.7
= FrcosO = 12 x 2 x cos180°
= 24 N-m=-24J

1.8 DOT PRODUCT OF TWO VECTORS IN TERMS OF THE COMPONENTS
ALONG THE COORDINATE AXES

Consider two vectors @ and b represented in terms of the unit vectors zA/A/A< along the coordinate axes
as

ai+a,j+ak
and b +b,]+bk

Then,

oL oL
I

WV

(ai+a,j+a,k)-(bi+b,]+bk)
ab,i-i+ab,i-j+ab,i-k

_ |+ab,j-i+ab,j-j+ab,j-k ()

vabkivabkj+abkk

MBDE ERSY www.madeeasypublications.org Solve;{ hﬁiﬁﬂfi ME
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Since 7,j and k are mutually orthogonal.

>

Wehave i.j=i-k=j.i=]-k=ki=k j=0
Also, i-i =1x1cos0=1
Similarly, j] = kk="1
Using these relations in equation (1), we get
ad.b=ab +apb, +ab,

1.9 CROSS PRODUCT OR VECTOR PRODUCT OF TWO VECTORS

The cross product or vector product of two vectors 3 and b, denoted by 3 x b is itself a vector. The
magnitude of this vector is

‘éxB‘ =absind .. (2)

where a and b are the magnitude of 3and b respectively and 8 is the

smaller angle between the two. When two vectors are drawn with both the tails

coinciding, two angles are formed between them. One of the angles is smaller than o
180° and the other is greater than 180° unless both are equal to 180°. The angle 6
used in equation (2) is the smaller one. If both the angles are equal to 180°, sin6 = 360° — 6
sin180° = 0 and hence ‘é’ X 5‘ =0. axB

Similarly if 6 = 0, sin® = 0 and ‘é xB| = 0. /

The cross product of two parallel vectors is zero. %

The direction 3 x b is perpendicular to both - e

a a
b b

dandb.

Thus, it is perpendicular to the plane formed by 3 and b . To determine the direction of arrow on this
perpendicular, we use right hand thumb rule.

Draw the two vectors dand b with both the tails coinciding. Now place your stretched right palm
perpendicular to the plane of g and b insucha way that the fingers are along the vector 3 and when the fingers
are closed they go towards p . The direction of the thumb gives the direction of arrow to be put on the vector
dxb.

Note that this rule makes the cross product non-commutative. In fact,

Gxb =-bxa
The cross product follows distributive law,
§X(5+5) = dxb+3ax¢é
It does not follow the associative law

éx(Ex?:) # (éxB)x?:

MEDE ERSYH www.madeeasypublications.org 301veg hﬁiﬁinvﬁfg; ME
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When we choose a coordinate system any two perpendicular lines may be chosen as X and Y axes.
However, once X and Y axes are chosen, there are two possible choices of Z-axis. The Z-axis must be perpendicular
to the X-Y plane. But the positive direction of Z-axis may be defined in two ways. We choose the positive
direction of Z-axis in such a way that

iijA' =K
Such a coordinate system is called a right handed system. In such a system
jxk =1iand kxi =]

Of course, Pxi = jxj=kxk=0

EXAMPLE : 1.3 The magnitudes of vectors OA, OB and OC in the
figure shown are equal. Find the direction of

OA+0B-0C.

Solution:
Let, OA = OB=0C=F

Ne

x-componentof OA = Fcos30° = F?

x-componentof OB = Fcos60° = g

x-componentof OC = Fcos135° = _i

S}

. FJ3) (F
x-componentof OA+0OB-0C = > + )1

)=g(\/§+1+\/§)

=k

y-componentof OA = Fcos60° = g

y-componentof OB = Fcos120° = —F—f
y-componentof OC = Fcos45° = £
J2
. (R, [_FB) (F\_F
y-componentof OA+OB-0C = (5) + (—TJ - (—2) = 5(1 -3 - \/5)
Angle of OA+OB-0C with the x-axis
F
S(1-v3-+2) (1-v3-+2)
- tan F PEE— tan™' £
5(1+\/§+\/§) (1"‘\/5"‘\/5)
MARDE ERSH www.madeeasypublications.org Solve;{ hﬁiﬁﬂfi ME
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EXAMPLE : 1.4 If the radius of the circle shown in the figure is R, then the c
resultant of the three vectors (74, OB and OC is B
(@) R(1++2) (b) 2R(1++2) -
o A
(c) BR(1++2) @) R(1+2v2)
Solution: (a)
OA = OC

OA+ OC is along OB (bisector) and its magnitude is
2Rcos45° = R.\2

(5/2\+ 70)+55’ is along OB and its magnitude is

RJ2+R = F1’(1+\/§)

EXAMPLE : 1.5 The unit vector in the direction of A =5f + ] - 2k is
Solution:
‘/_4" = 52+ 1 +(—2)2 =30
A 5. 1. 2
The required unit vector is = = I+ - k
° 7]~ Jeo' a0’ a0
EXAMPLE : 1.6 If A=2i -3 +7k, B=i+2k and C =] -k, then the magnitude of the product

A(éxé) is

(@) O (b) 2
() 3 (d) 2
Solution: (a)
BxG = (f+2K)x(j-K)
= ix /A—/%)+2/2><(/A'—/2)

A (Bx H) = (2f -3j+7k)(-2i +] +K)
= (2)(2)+(3) () +(7) (1)
-0

MRDE ERSY
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EXAMPLE : 1.7

A

Q.1

Q.2

then the angle between A and B is

If Aand B are two non-zero vectors such that ‘Z\ + é‘ = %‘Z\' _ é‘ and ‘/_4" - 2‘3‘ ,

(a) cos0.5 (b) cos'0.866
(c) cos(-0.75) (d) cos(0.75)
Solution: (c)
(42 +B? +2ABcose) = %(AZ +B° - 2ABcos6)
= 3A% + 3B + 10ABcos® = 0
1282 1+ 382 + 10(2B) (B) cos® = 0 (Putting 1Al = 218])
15B8% + 20B8°cos® = 0
. 3
cosh = —7
0 = oos‘(—g)
4
EEEE
OBJECTIVE (@) 9.26m (b) 13.37m
» BRAIN TEASERS () 10.42m (d) 8.38m
Q.3 Theangle between two vectors A = 27 + ] — k
A particle whose speed is 25 m/sec moves along L.
the line from A(2, 1)to B(9, 25). The velocity vector andB=1-k is
Ao (@) 30° (b) 60°
of the particle in the form & +bj is © o (d) 90
(@) (7i + 7j) m/s (0) (7i + 24/) m/s Q.4 If two vectors are given as:
(©) (247 +12])m/s () (24f+7])mis A=i+2]—k
A particle moves along a path ABCD as shown B=—i-j+k
in the figure. The magnitude of net displacement then, the vector perpendicular to (A X B) canbe
of the particle from Ato D is (a) 21'A+4]'+2/% (b) f+jA'+/%
(c) 25/ —625/-25k (d) 3i—2j+3k
Q5 If (é+5) is perpendicular to b and 3+2b is
perpendicular to &. If || = aand ‘5‘ = b, then
(@ a=»b (b) a=2b
(c) b=2a (d) a=bv2
Q.6 Two forces are acting on a body, /3‘1 = 2?+3f'

and it does 8J of work, £, =37 +5; and it does

www.madeeasypublications.org
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-4J of work on body. The magnitude of
displacement traversed by the body is = \/(3+600345o)2 +(7+ 68iﬂ45°)2
(@) 57.27m (b) 30.53m
(c) 54.40m (d) 61.06m

= J(7.24 +(11.24)°

ANSWER KEY = /52.41+126.33 =+/178.74

=13.37m

3. (a)
6. (d) The dot product of two vectors is given by
A.B = ‘/_4'Hé|cose
HINTS & EXPLANATIONS
Velocity vector is given by the product of ‘ ” |
magnitude of velocity (speed) multiplied by the e 7
unit vector along velocity. o (2i +) —k)'(i —k)
\/22 s B (PR (=1
— COS_1 [ﬂ]—cos_1 [i—
- J6+/2 243 |
, , = cos™ ¥3 =30°
Unit vector along velocity, 2
AB  (9-2)i+(25-1))
48| V72 + 242 L
. . The cross product of (A xB) is given as
oo ‘\7‘@=25(71+241) o
25 Pk
= (7f+24]') m/s (AxB) -1 2 -1
2 (b) -1 -1 1
The displacement of the particle from Ato D is _ 19(1)_].(0)”2(_“2) ik
given by AD

C will be perpendicular to (Z\ X é) JitCe (,_4' x é)
gives a result zero. From options,
(o5 - 625] - 25Kk (7 - k)
25-25=0
5. (d)

From the given conditions, (5 + 5) is perpendicular

to b, therefore their dot product is zero.

AD = JAFZ + DF? = \[(AB+ BF)’ +(DE + EF)? (4+5)b =0

MRDE ERSYH www.madeeasypublications.org s°1veg hﬁiﬁnﬁi ME
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)

a-b+‘b‘ -0

a.-b+b?2 =0 ()
Similarly,

(a+25).a -0

& +23-5 =0

a°+23-b =0 (D)
From equations (i) and (ii), we get
2
& _
2
a= +2p

Neglecting negative sign as magnitude cannot

be negative, therefore a = Ja2b.

(d)
Let the displacement of the body is given by

r=xi+y

MRDE ERSYH

work done by first force,

l

W1= =8

=

=8

~——

(2? + 3]')-(xf +y]

2x+3y=28 ()
Work done by second force,

W,=F,.7 =4

(3i+ 5]')-(xf+ y/A) -4

3x+5y=-4 .. (i
Solving (i) and (ii) equation, we get
x =52, y=-32
7 = 52/ -32)
7| = {(52)° +(-32)° = /3728
=61.06m
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