Electronics Engineering

Network Theory

Comprehensive Theory with Solved Examples and Practice Questions

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016

E-mail: infomep@madeeasy.in

Contact: 9021300500

Visit us at: www.madeeasypublications.org

Network Theory

Copyright © by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2015
Second Edition: 2016
Third Edition: 2017
Fourth Edition: 2018
Fifth Edition: 2019
Sixth Edition: 2020
Seventh Edition: 2021
Eighth Edition: 2022
Ninth Edition: 2023

© All rights reserved by MADE EASY PUBLICATIONS Pvt. Ltd. No part of this book may be reproduced or utilized in any form without the written permission from the publisher.

Contents

Network Theory

Cn	apter i		Cn	apter 4	
Ba	sic and Electric Circuits	1	Cir	cuit Theorems	53
1.1	Introduction	1	4.1	Introduction	53
1.2	Charge	1	4.2	Linearity and Superposition	53
1.3	Current	2	4.3	Source Transformation	55
1.4	Voltage	3	4.4	Thevenin's Theorem	56
1.5	Power	4	4.5	Norton's Theorem	58
1.6	Energy	5	4.6	Maximum Power Transfer	59
1.7	Circuit Elements	5	4.7	Reciprocity Theorem	60
1.8	Sources	8		Student's Assignments	70
	Student's Assignments	11			
Chautau 2			Chapter 5		
Chapter 2			Ca	pacitors and Inductors	73
Ba	sic Laws1	5	5.1	Introduction	73
	Introduction		5.2	Voltage, Current and Energy Relationship of a	
2.2	Ohm's Law and Resistance	15		Capacitor	74
2.3	Nodes, Paths, Loops and Branches	17	5.3	Capacitance Combinations	76
2.4	Kirchhoff's Current Law (KCL)	18	5.4	Inductors	77
2.5	Kirchhoff's Voltage Law (KVL)	19	5.5	Voltage, Current and Energy Relationship of an	
2.6	Series Resistances and Voltage Division	19		Inductor	77
2.7	Parallel Resistances and Current Division	20	5.6	Inductor Combinations	78
2.8	Source Transformation	21		Student's Assignments	83
2.9	Sources in Series or Parallel	22			
2.10	Wye-Delta Transformations	24	Ch	apter 6	
2.11	Network Manipulations for Easy Analysis		Fir	st Order RL and RC Circuits	86
	Student's Assignments	32	6.1	Introduction	86
Ch	apter 3		6.2	Definition of the Laplace Transform	87
Basic Nodal and Mesh Analysis38			6.3	Circuit Elements in the s-domain	90
3.1	Introduction		6.4	Source-Free or Zero-Input Response	93
3.2	Nodal Analysis		6.5	Step Response of First Order Circuit	99
3.3	Nodal Analysis with Voltage Source			Student's Assignments	112
3.4	Mesh Analysis				
	Mesh Analysis with Current Sources		Ch	apter 7	
3.5 3.6	Comparison Between Nodal Analysis and	7.5	Se	cond Order RLC Circuits	.117
٥.0	Mesh Analysis	44	7.1	Introduction	117
	,	40	7.2	Finding Initial and Final Values	117

7.3	The Source-Free Series RLC Circuit119	Chapter 11	
7.4	Source-Free Parallel RLC Circuit122	Frequency Response & Resonance	216
7.5	Step By Step Approach of Solving Second Order	11.1 Introduction	216
	Circuits	11.2 Transfer Functions	216
7.6	Step Response of Series RLC Circuit125	11.3 Resonant Circuit	217
7.7	Step Response of Parallel RLC Circuit126	Student's Assignments	234
7.8	Circuit Analysis in the s-Domain128	-	
	Student's Assignments	Chapter 12	
		Two Port Network	236
	apter 8	12.1 Introduction	236
Sir	nusoidal Steady-State Analysis143	12.2 Z-parameters	236
8.1	Introduction143	12.3 Y-parameters	238
8.2	Sinusoids	12.4 h-parameters or Hybrid Parameters	239
8.3	Phasors	12.5 g-parameters or Inverse Hybrid Parameters	240
8.4	Phasor Relationship for Circuit Elements 146	12.6 Transmission Parameters (ABCD)	241
8.5	Impedance and Admittance148	12.7 Inverse Transmission Parameters	242
8.6	Kirchhoff's Laws in the Frequency Domain149	12.8 Inter Relations in Network Parameters	243
8.7	Impedance Combinations150	12.9 Interconnection of Two-port Networks	244
8.8	Circuit Analysis in Phasor Domain152	12.10 Network Components	246
8.9	Phasor Diagrams158	12.11 Barletts Bisection Theorem	247
	Student's Assignments174	12.12 Open Circuited and Short Circuited Impedances	247
		Student's Assignments	257
	napter 9	-	
AC	Power Analysis179	Chapter 13	
9.1	Introduction	Network Topology	263
9.2	Instantaneous Power	13.1 Introduction	263
9.3	Average Power	13.2 Network Graph	263
9.4	Effective Values of Current and Voltage181	13.3 Tree and Co-Tree	265
9.5	Average Value of Periodic Waveform183	13.4 Incidence Matrix	266
9.6	Apparent Power and Complex Power 184	13.5 Tie-Set	268
	Student's Assignments193	13.6 Cut-Set	269
CI.	200401110	13.7 Duality	271
	napter 10	Student's Assignments	276
	agnetically Coupled Circuits198		
	Introduction198	•	
	2 Self Inductance		
	3 Mutual Inductance		
10.4	The Ideal Transformer205		

Basic and Electric Circuits

1.1 Introduction

In Electronics Engineering, we are often interested in communicating or transferring energy from one point to another. To do this requires an interconnection of electrical devices. Such interconnection is referred to as an *electric circuit*, and each component of the circuit is known as an *element*.

An **electric circuit** is an interconnection of electrical elements.

In circuit analysis we need to calculate the voltage across some component or the current through other component or the power absorbed and delivered by different elements. In this chapter we will study about basic electrical variables such as charge, current, voltage, power and energy which will be used throughout the book. We initially focus on the *resistor*, a simple passive component, and a range of idealized active sources of voltage and current. As we move forward, new components will be added to the inventory to allow more complex (and useful) circuits to be considered.

A quick word of advice before we begin: Pay close attention to the role of "+" and "-" signs when labelling voltages, and the significance of the arrow in defining current; they often make the difference between wrong and right answers.

1.2 Charge

The concept of electric charge is the underlying principle for explaining all electrical phenomena. Also the most basic quantity in an electric circuit is the *electric charge*.

Charge is an electrical property of the atomic particles of which matter consists, measured in Coulombs (C).

The smallest amount of charge that exists is the charge carried by an electron, equal to -1.6×10^{-19} Coulomb. While, a proton carries a charge of $+1.6 \times 10^{-19}$ Coulomb.

The following points should be noted about electric charge:

- 1. The Coulomb is a large unit for charges. In 1 C of charge, there are $1/(1.602 \times 10^{-19}) = 6.24 \times 10^{18}$ electrons.
- 2. According to experimental observations, the only charges that occur in nature are integral multiple of the electronic charge $e = -1.602 \times 10^{-19}$ C.
- 3. The law of conservation of charge states that charge can neither be created nor be destroyed, can be only transferred. Thus the algebraic sum of the electric charges in a system does not change.

1.3 Current

Electric current is the time rate of change of charge, measured in amperes (A). Mathematically, the relationship between current i, charge q, and time t is

$$i(t) = \frac{dq(t)}{dt} \qquad \dots (1.1)$$

The net movement of 1 Coulomb (1C) of charge through a cross section of a conductor in 1 second (1s) produces an electric current of 1 amperes (1A).

The charge transferred between time t_0 and t is obtained by integrating both sides of Equation (1.1). We gets

$$q(t) = \int_{t_0}^{t} i(t) dt$$
 ...(1.2)

1.3.1 Reference Direction for Current

The direction of current flow is conventionally taken as the direction of positive charge movement. Figure 1.1 shows the convention that we use to describe a current. The current i_1 is the rate of flow of electric charge from left to right, while the current i_2 is the flow of charge from right to left. Both have same value but opposite direction.

$$i_1 = -i_2$$

A current can be completely described by a value (which can be positive or negative) and a direction (indicated by an arrow).

Figure-1.1: Current in a circuit element

For **example**, a current of 5 A may be represented positively or negatively as shown in Figure 1.2. In other words, a negative current of –5 A flowing in one direction as shown in Figure 1.2 (b) is the same as a current of +5 A flowing in the opposite direction as shown in Figure 1.2 (a).

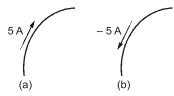


Figure-1.2: Conventional current flow (a) Positive current flow (b) Negative current flow

1.3.2 Types of Current

Different types of current are illustrated in Figure 1.3

- A current that is constant in time is termed as direct current, or simply dc, and is shown by Figure 1.3 (a).
- A current that vary sinusoidally with time [Figure 1.3 (b)]; is often referred as alternating current, or ac.

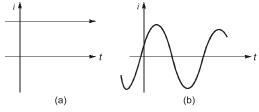


Figure-1.3: (a) Direct current (dc) (b) Sinusoidal current (ac)

1.4 Voltage

To move the electron in a conductor in a particular direction requires some work or energy transfer. This work is performed by an external electromotive force (emf), typically represented by the battery. This emf is also known as *voltage* or *potential difference*. The voltage v_{ab} between two points a and b in an electric circuit is the energy (or work) needed to move a unit charge from a to b; mathematically,

$$v_{ab}(t) = \frac{dw}{dq} \qquad \dots (1.3)$$

where w is energy in joules (J), q is charge in Coulombs (C) and voltage v_{ab} is measured in volts (V). It is evident that

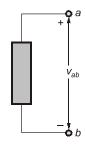
1 volt = 1 Joule/Coulomb = 1 Newton-meter/Coulomb

Thus, **voltage** (or **potential difference**) is the energy required to move a unit charge through an element, measured in volts (V).

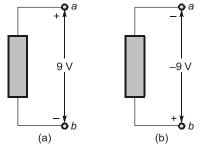
Voltage does not exist at a point by itself; it is always determined with respect to some other point. For this reason, voltage is also called potential difference. We often use the terms interchangeably.

1.4.1 Reference Polarity for Voltage

Figure 1.4 shows the voltage across an element (represented by a rectangular block) connected to points a and b. The plus (+) and minus (–) signs are used to define reference direction or voltage polarity. The v_{ab} can be interpreted in two ways; (1) point a is at a potential of v_{ab} volts higher than point b, or (2) the potential at point a with respect to point b is v_{ab} . It follows logically that general


$$V_{ab} = -V_{ba}$$

$$V_{ab} = V_a - V_b$$


$$V_{ba} = V_b - V_a$$

For **example**, in Figure 1.5, we have two representation of the same voltage. In Figure 1.5 (a), point a is +9 V above point b; in Figure 1.5 (b), point b is -9 V above point a. We may say that in Figure 1.5 (a), there is a 9 V *voltage drop* from a to b or equivalently a 9 V *voltage rise* from b to a. In other words, a voltage drop from a to b is equivalent to a voltage rise from b to a.

NOTE: Keep in mind that electric current is always through an element and that electric voltage is always across the element or between two points.

*Figure-***1.4**: *Polarity of Voltage* v_{ab}

Figure-1.5: Two equivalent representations of the same voltage v_{ab} :

- (a) Point a is 9 V above point b,
- (b) Point b is –9 V above point a

1.4.2 Types of Voltage

Types of voltage are:

- A voltage that is constant in time is termed as dc voltage.
- A voltage that vary sinusoidally with time is referred as ac voltage.

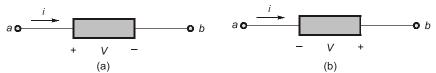
1.5 Power

Power is the time rate of expending or absorbing energy, measured in watts (W). Thus, in terms of energy, power is defined as

$$p(t) = \frac{dw}{dt} \qquad ...(1.4)$$

$$p(t) = \frac{dw}{dt} = \frac{dw}{dq} \frac{dq}{dt} = v(t)i(t)$$

$$p(t) = v(t)i(t) \qquad ...(1.5)$$


We see that power is simply the product of the voltage across an element and the current through the element. This is a relation which we shall have frequent use in this book.

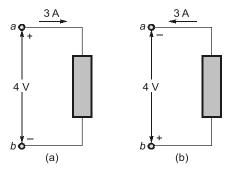
1.5.1 Passive Sign Convention for Power Calculation

Current direction and voltage polarity are important in determining the sign of power. According to passive sign convention, the current enters the circuit element at the + terminal of the voltage and exit at the – terminal as shown in Figure 1.6(a). In this case power absorbed by the circuit element is

$$D = Vi$$

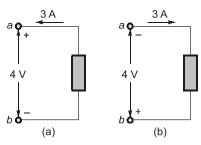
This power is also called power dissipated by the element or power received by the element.

Figure-1.6: Passive Sign convention for power (a) Absorbing power (b) Supplying power


If the current enters the circuit element at the – terminal of the voltage and exit at the + terminal as shown in Figure 1.6 (b), the power absorbed will be

$$p = -vi$$

If the absorbed power p is negative, then the circuit element actually generates power or , equivalently, delivers power to the rest of the circuit. The power absorbed by an element and the power supplied by the same element are related by


Power absorbed = -Power supplied

For **example**, the element in both circuits of Figure 1.7 has an absorbing power of +12 W because a positive current enters the positive terminal in both cases. In Figure 1.8 however, the element is absorbing power of -12 W is equivalent to a supplying power of +12 W.

Figure -1.7: Two cases of an element with an absorbing power of 12 W (a) $p = 4 \times 3 = 12$ W and (b) $p = 4 \times 3 = 12$ W

Figure-1.8: Two cases of an element with a supplying power of 12 W
(a) $p = -4 \times 3 = -12$ W and (b) $p = -4 \times 3 = -12$ W

1.5.2 Law of Conservation of Energy

Law of conservation of energy must be obeyed in any electric circuit. For this reason, the algebraic sum of power in a circuit, at any instant of time, must be zero:

$$\Sigma p = 0 \qquad \dots (1.6)$$

Thus, sum of the absorbed power is always equal to sum of delivered power in a circuit. Mathematically we can write

$$\Sigma p_{\text{absorbed}} = \Sigma p_{\text{supplied}}$$

1.6 Energy

Energy is the capability to perform work. The energy over a time interval is found by integrating the power. The energy absorbed or supplied by an element from time t_0 to t is

$$w(t) = \int_{t_0}^{t} p(\tau) d\tau$$
 ...(1.7)

Which is expressed in watt-seconds or Joules (J). The electric power utility companies measure energy in watt-hours (Wh), where

$$1 \text{ Wh} = 3,600 \text{ J}$$

NOTE: The electric bill that we pay to electric utility companies is paid for electric energy consumed over a certain period of time.

1.7 Circuit Elements

An element is the basic building block of a circuit. By definition, a simple circuit element is the mathematical model of a two-terminal electrical device, and it can be completely characterized by its voltage-current relationship; it cannot be subdivided into other two-terminal devices.

For example,

- If the voltage across the element is linearly proportional to the current through it, then element is called as a **resistor**.
- If the terminal voltage is proportional to *derivative of current* with respect to time, then element is called as a **inductor**.
- If the terminal voltage is proportional to *integral of current* with respect to time, then element is called as a **capacitor**.
- If the terminal voltage is completely independent of current, or the current is completely independent of voltage, then element is called as an **independent source**.
- The element for which either the voltage or current depend upon a current or voltage elsewhere in the circuit; such elements are called as **dependent source**.

Classification of Network Elements 1.7.1

Active and Passive Elements

- If we have a network element that is absorbing power i.e., energy delivered to the element
 - $\int v(t)i(t)dt$ is positive then the element is **passive element**. Example of passive elements are resistor, inductor, diodes and capacitor.
- If we have a network element that is delivering power i.e., energy delivered to the element
 - $\int v(t)i(t)dt$ is negative then the element is **active element**. Op-amps, generators and independent sources are the example of active elements.
- The active element can provide power to the circuit, or provide power gain in the circuit.

- The transistor provide power gain so they are active element, but transformer have same power at input and output they are not active element.
- The active element should be able to provide power/power gain to the circuit for infinite duration of time, that is why the charged capacitor or inductor are not active elements.

Bilateral and Unilateral Elements

- For a Bilateral element, the voltage-current relationship is the same for current flowing in either direction. Resistors, inductors and capacitors are the examples of bilateral elements.
- For a **Unilateral element**, the voltage-current relationship is different for two directions of current flow. Diode is an Unilateral elements.

Lumped and Distributed Elements

- Lumped elements are considered as the separate elements which are very small in size. For example resistor, inductors, capacitors.
- Distributed elements are not electrically separable. These are distributed over the entire length of the circuit. For example, transmission lines.

NOTE: The size of Lumped element is small with respect to signal wavelength. At steady state we can consider distributed element as Lumped element.

Linear and Non-linear Elements

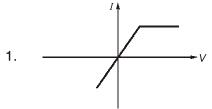
Linearity is the property of an element describing a linear relationship between excitation and response. The property is a combination of both the homogeneity (scaling) property and the additivity property.

- The homogeneity property requires that if the input (also called the excitation) is multiplied by a constant, then the output (also called the response) gets multiplied by the same constant. For **example**, if for excitation (voltage or current) E(t) we get response (voltage or current) R(t). Then for excitation cE(t) we will get response cR(t).
- The additivity property requires that the response to a sum of inputs is the sum of the responses to each input applied separately.

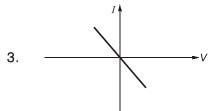
For **example**, if for excitation (voltage or current) $E_1(t)$ we get response (voltage or current) $R_1(t)$ and for excitation (voltage or current) $E_2(t)$ we get response (voltage or current) $R_2(t)$ then for excitation $E_1(t) + E_2(t)$ we get response (voltage or current) $R_1(t) + R_2(t)$.

The element that follows **additivity** and **homogeneity property** for relationship between excitation and response is called a **linear element**.

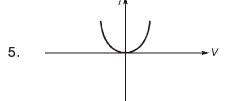
The element that does not follow **additivity** and **homogeneity property** for relationship between excitation and response is called a **non-linear element**.

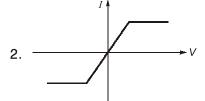

1.7.2 I-V Characteristic Curves for Different Elements

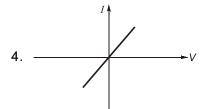
Following are given some I-V characteristic curves for different elements, looking at these characteristics we can find the type of element.

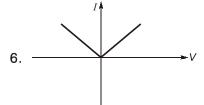


- If the characteristic curve is similar in opposite quadrants then the element is bidirectional otherwise it is unidirectional.
- If ratio of voltage to current at any point on characteristic curve is negative then the element is active otherwise it is passive.
- Every linear element must exhibit bidirectional property.


Characteristics


- (i) Non-linear
- (ii) Unidirectional
- (iii) Passive


- (i) Linear
- (ii) Bidirectional
- (iii) Active


- (i) Non-linear
- (ii) Unidirectional
- (iii) Active

- (i) Non-linear
- (ii) Bidirectional
- (iii) Passive

- (i) Linear
- (ii) Bidirectional
- (iii) Passive

- (i) Non-linear
- (ii) Unidirectional
- (iii) Active

1.8 Sources

In this section we introduce a basic circuit element called a source. The other elements such as resistors. inductors and capacitors are discussed in next chapters.

Sources are classified as voltage sources and current sources. Further it may be classified as dependent and independent sources.

1.8.1 **Independent Voltage Sources**

An independent voltage source is characterized by a terminal voltage which is completely independent of the current through it. The circuit symbol is shown in Figure 1.9; the subscript 's' merely identifies the voltage as a "source" voltage, and is common but not required.

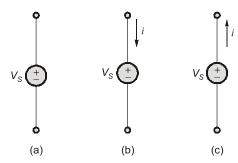
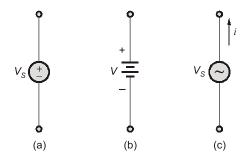



Figure-1.9: Circuit symbol of the independent voltage source

- The presence of the plus sign at the upper end of the symbol of the independent voltage source in Figure 1.9 does not necessarily mean that the upper terminal is numerically positive with respect to the lower terminal. Instead, it means that the upper terminal is V_s volts positive with respect to the lower.
- If at some instant V_s happens to be negative, then the upper terminal is actually negative with respect to the lower at that instant.

An independent voltage source with a constant terminal voltage is often termed an independent dc voltage source and can be represented by either of the symbols shown in Figure 1.10 (a) and (b). The symbol for an independent ac voltage source is shown in Figure 1.10 (c).

Figure-1.10: (a) dc voltage source symbol; (b) battery symbol and (c) ac voltage source symbol


Independent Current Source 1.8.2

In the independent current source the current through the element is completely independent of the voltage across it.

An independent current source with a constant terminal current is often termed as independent dc current source and can be represented by symbol shown in Figure 1.11 (a). The symbol for an independent ac current source is shown in Figure 1.11 (b).

Figure-1.11: (a) dc current source symbol (b) ac current source symbol

It is a common mistake to view an independent current source as having zero voltage across its terminals while providing a fixed current. In fact, we do not know a priori what the voltage across a current source will be—it depends entirely on the circuit to which it is connected.

NOTE: Generally, independent sources supply power to the circuit. However, they can be connected into a circuit in such a way that they absorb power from the circuit.

1.8.3 Dependent Source

Dependent sources are the sources whose output depend on some other voltage or current in a circuit. Both voltage and current types of sources may be dependent, and either may be controlled by a voltage or a current. Thus, there are four types of dependent sources:

- 1. A voltage-controlled voltage source (VCVS); v = Av
- 2. A current-controlled voltage source (CCVS); $v = Ai_v$
- 3. A voltage-controlled current source (VCCS); $i = Av_x$
- 4. A current-controlled current source (CCCS); $i = Ai_x$

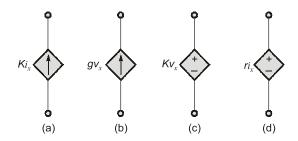


Figure-1.12: The four different types of dependent sources

- (a) A current-controlled current source (b) A voltage-controlled current source
- (c) A voltage-controlled voltage source (d) A current-controlled voltage source

- A different symbol, in the shape of a diamond, is used to represent dependent sources.
- Dependent sources are very useful in describing certain types of electronic circuits.
- A dependent source may absorb or supply power.

Example - 1.1

How much charge is represented by 4600 electron?

Solution:

Each electron has -1.602×10^{-19} C.

Hence 4600 electrons will have, -1.602×10^{-19} C/electron \times 4600 electrons = -7.369×10^{-16} C

Example - 1.2 The total charge entering a terminal is given by $q = 5t \sin 4\pi t$ mC. Calculate the current at t = 0.5 s.

Solution:

$$i = \frac{dq}{dt} = \frac{d}{dt}$$
 (5t sin 4\pi t) mC/s = (5 sin 4\pi t + 20 \pi t \cos 4\pi t) mA

 $i = 5 \sin 2\pi + 10\pi \cos 2\pi = 0 + 10\pi = 31.42 \text{ mA}$

at t = 0.5,

be the total charge entering a terminal between t = 1s and t = 2s

Determine the total charge entering a terminal between t = 1s and t = 2s if the current passing the terminal is $i = (3t^2 - t) A$.

Solution:

$$Q = \int_{t=1}^{2} i \, dt = \int_{1}^{2} (3t^2 - t) \, dt = \left(t^3 - \frac{t^2}{2}\right)_{1}^{2} = (8 - 2) - \left(1 - \frac{1}{2}\right) = 5.5 \, \text{C}$$

Example - 1.4 An energy source forces a constant current of 2 A for 10 s to flow through a lightbulb. If 2.3 kJ is given off in the form of light and heat energy, calculate the voltage drop across the bulb.

Solution:

The total charge is

$$\Delta q = i\Delta t = 2 \times 10 = 20 \text{ C}$$

The voltage drop is

$$V = \frac{\Delta w}{\Delta a} = \frac{2.3 \times 10^3}{20} = 115 \text{ V}$$

Example-1.5 Find the power delivered to an element at t = 3 ms if the current entering its positive terminal is $i = 5 \cos 60 \pi t A$ and the voltage is: (a) v = 3i, (b) $v = 3 \frac{di}{dt}$.

Solution:

(a) The voltage is $v = 3i = 15 \cos 60\pi t$; hence, the power is

$$p = vi = 75 \cos^2 60\pi t \text{ W}$$
At $t = 3 \text{ ms}$,
$$p = 75 \cos^2 (60\pi \times 3 \times 10^{-3})$$

$$= 75 \cos^2 0.18\pi = 53.48 \text{ W}$$

(b) We find the voltage and the power as

$$v = 3 \frac{di}{dt} = 3 (-60\pi) 5 \sin 60\pi t = -900\pi \sin 60\pi t V$$

$$p = vi = -4500\pi \sin 60\pi t \cos 60\pi t W$$

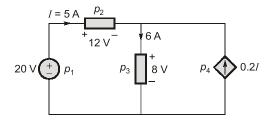
$$p = -4500\pi \sin 0.18\pi \cos 0.18\pi W$$

$$= -6.396 \text{ kW}$$

Example - 1.6

How much energy does a 100 W electric bulb consume in two hours?

Solution:


$$w = pt = 100 \text{ (W)} \times 2 \text{ (h)} \times 60 \text{ (min/h)} \times 60 \text{ (s/min)}$$

= 720000 J = 720 kJ

This is the same as

 $w = pt = 100 \text{ W} \times 2h = 200 \text{ Wh}$

Example - 1.7

Calculate the power supplied or absorbed by each element in figure.

Solution:

We apply the sign convention for power shown in figure. For p_1 , the 5 A current is out of the positive terminal (or into the negative terminal); hence,

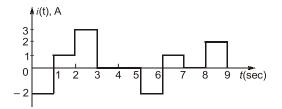
$$p_1 = 20 (-5) = -100 \text{ W}$$
 Supplied power

For p_2 and p_3 the current flows into the positive terminal of the element in each case.

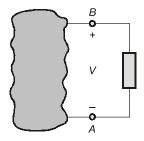
$$p_2 = 12 (5) = 60 \text{ W}$$
 Absorbed power $p_3 = 8 (6) = 48 \text{ W}$ Absorbed power

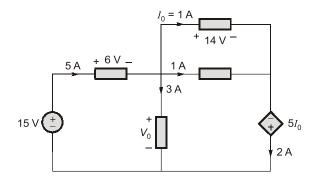
For p_4 , we should note that the voltage is 8 V (positive at the top), the same as the voltage for p_3 , since both the passive element and the dependent source are connected to the same terminals. (Remember that voltage is always measured across an element in a circuit). Since the current flows out of the positive terminal,

$$p_4 = 8 (-0.2I) = 8 (-0.2 \times 5) = -8 \text{ W}$$
 Supplied power

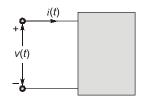

We should observe that the 20 V independent voltage source and 0.2I dependent current source are supplying power to the rest of the network, while the passive elements are absorbing power. Also

$$p_1 + p_2 + p_3 + p_4 = -100 + 60 + 48 - 8 = 0$$


The total power supplied equals the total power absorbed.


Q.1 The current in an ideal conductor is plotted in the figure below. How much charge is transferred in the interval 0 < t < 6 sec (in C)?

Q.2 In the figure shown below, when 12 coulombs of charge passes through the element from A to B, the energy absorbed by the element is 60 J. What is the voltage V across the element (in volts)?


- Q.3 An automobile battery is charged with a constant current of 4 A. The terminal voltage of the battery is v(t) = 10 + 2t V, where t is in hours. How much amount of energy (in kJ) is delivered to the battery during 3 hours?
- **Q.4** In the circuit shown in figure, voltage V_0 is ____

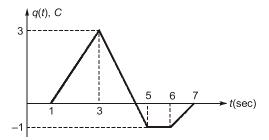
Q.5 For the circuit element shown in figure voltage and current are given as

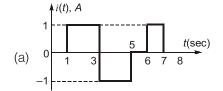
$$v(t) = 200e^{-50t} \sin 150t \text{ V}$$
 and

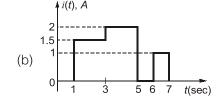
$$i(t) = 10e^{-50t} \sin 150t A$$

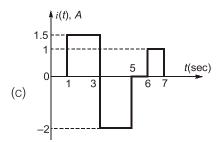
What is the power absorbed by the element at t = 20 ms (in watts)?

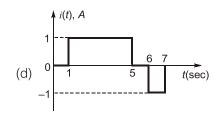
- **Q.6** If $q = (10 10e^{-2t})$ mC, find the current at t = 0.5s.
- Q.7 In an electron beam in a TV picture tube carries 10¹³ electrons/second and is passing through plates maintained at a potential difference of 30 kV, calculate the power in the beam.

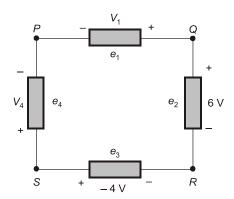

Answers:

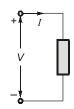

- 1. (0)
- **2.** (-5)
- **3.** (561.6 kJ)


- **4.** (9)
- **5.** (5.4)
- **6.** (7.36 mA)
- **7.** 48 mW




- Q.1 Which of the following amount of electrons is equivalent to -3.941 C of charge?
 - (a) 1.628×10^{20}
- (b) 1.24×10^{18}
- (c) 6.482×10^{17}
- (d) 2.46×10^{19}
- The charge flowing in a circuit element is plotted in the following figure. The plot for current i(t) will be




Q.3 A circuit consisting of four circuit elements is shown in the figure below. The voltage drops and polarity are indicated in the figure.

It is given that $V_{PQ} = 8$ V, then what are the values of V_1 and V_{QR} ?

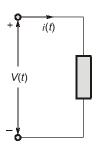
- (a) 8 V, 6 V
- (b) -8 V, 6 V
- (c) -8 V, -6 V
- (d) 8 V, -6 V

Q.4 Match List-I (V, I) with List-II (Power absorbed or supplied) for the element shown in figure and choose the correct answer using the codes given below the list.

List-I

List-II

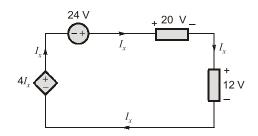
- **A.** V = 5 V, I = 3 A
- 1. 15 W, supplied
- **B.** V = 5 V, I = -3 A
- 2. 16 W, absorbed
- **C.** V = -8 V, I = 2 A
- 3. 15 W, absorbed
- **D.** V = -8 V, I = -2 A

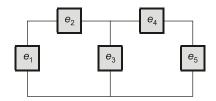

D

4. 16 W, supplied

Codes:

A В С

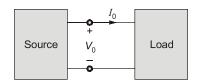

- (a) 1 3 2 4
- (b) 1 3 4 2
- (c) 3 1 4 2
- (d) 3 1 2 4
- **Q.5** The current through and voltage across the element shown in Figure are given as $v(t) = 4 \cos 3t \, \text{V}$, $i(t) = 5 \sin 3t \, \text{A}$.

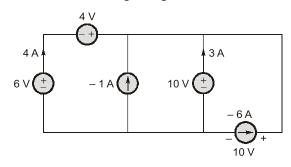

Consider the following statements:

- 1. The maximum value of power absorbed is 10 W.
- 2. At t = 0.5 sec, element absorbs power.
- 3. At t = 1 sec, element delivers power. Which of the above statements are true?
- (a) 1 and 3
- (b) 2 and 3
- (c) 1 and 2
- (d) 1, 2 and 3

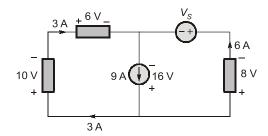
Q.6 In the circuit shown below, if dependent source supplies 16 W of power, then the 24 V source

- (a) Supplies 48 W of power
- (b) Absorbs 48 W of power
- (c) Supplies 96 W of power
- (d) Absorbs 64 W of power
- Q.7 Let P_i denotes the power absorbed by element e_i in the following circuit. If $P_1 = -210$ W, $P_2 = 45$ W, $P_4 = 50$ W and $P_5 = 20$ W then element


- (a) receives 325 W
- (b) delivers 95 W
- (c) receives 95 W
- (d) delivers 325 W


Common Data Questions (8 to 9):

In the electric circuit shown in Figure, voltage V_0 and I_0 are related as follows


$$V_0 = \begin{cases} 25 - I_0^2, & 0 \le I_0 \le 5 \\ 0, & I_0 \ge 5 \end{cases}$$

- **Q.8** The power absorbed by the load when $I_0 = 3$ A and $I_0 = 4$ A are respectively
 - (a) 16 W, 9 W
- (b) 64 W, 27 W
- (c) 48 W, 36 W
- (d) 66 W, 84 W
- **Q.9** The value of current I_0 , such that power absorbed by load is maximum, will be
 - (a) 2.88 A
- (b) 5 A
- (c) 1 A
- (d) 1.69 A
- Q.10 In the circuit shown below, which of the following sources are being charged?

- (a) 6 V, 4 V and 10 V source
- (b) -1 A and -6 A source
- (c) 6 V and -1 V source
- (d) 4 V and 10 V source
- **Q.11** The voltage source V_S in the figure

- (a) supplies 48 W
- (b) absorbs 216 W
- (c) absorbs 48 W
- (d) supplies 216 W

Answer Key:

- **1.** (d) **2.** (c)
- **3.** (b)
- **4.** (c)
- **5.** (d)

- **6.** (a)
- **7.** (c)
- **8.** (c)
- **9.** (a)
- **10.** (b)

11. (c)

=**=***