INSTRUMENTATION

ENGINEERING

SIGNALS AND
SYSTEMS

Comprehensive Theory
with Solved Examples and Practice Questions




-

MADE ERASYH
Publications

MADE EASY Publications Pvt. Ltd.
Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro
Station), New Delhi-110016 | Ph.: 9021300500

Email : inffomep@madeeasy.in | Web : www.madeeasypublications.org

Signals and Systems

Copyright © by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be
reproduced, stored in or introduced into a retrieval system,
or transmitted in any form or by any means (electronic,
mechanical, photo-copying, recording or otherwise),
without the prior written permission of the above mentioned

publisher of this book.

MADE EASY Publications Pvt. Ltd. has taken due care
in collecting the data and providing the solutions, before
publishing this book. Inspite of this, if any inaccuracy or
printing error occurs then MADE EASY Publications Pvt.
Ltd. owes no responsibility. We will be grateful if you could

point out any such error. Your suggestions will be appreciated.

First Edition : 2015
Second Edition: 2016
Third Edition : 2017
Fourth Edition : 2018
Fifth Edition : 2019
Sixth Edition : 2020
Seventh Edition : 2021
Eighth Edition : 2022

Ninth Edition : 2023



CONTENTS
Signals and Systems

Introduction to Signals ........cooercerererennneee. 2-65
1.1 Introduction 2
1.2 Elementary Signals 2
1.3 Classification of Signals 20
14 Basic Operations on Signals 44

Objective Brain Teasers 58

Conventional Brain Teasers 63

Introduction to Systems..........cccouuerrneeeens 66-112
2.1 Introduction 66
2.2 Continuous-time and discrete-time systems.............. 67
2.3 Classification of Systems 67
24 Linear Time-Invariant (LTI) SyStems.....coeecemeceunnecennes 76
2.5 Continuous time LTI systems 77
2.6 Discrete-time LTI Systems 91
2.7 LTI System Properties and the Impulse Response ....95
2.8 Step Response of an LTI System .......ccnecennecennenes 99

Objective Brain Teasers 102

Conventional Brain Teasers 108

Continuous-time Fourier Series ........... 113-143
3.1 Introduction 113
3.2 Different Forms of Fourier Series.......oereecrennn. 113
33 Symmetry Conditions in Fourier Series ... 117
34 Dirichlet Conditions 120
35 Properties of Fourier Series 122
3.6 Systems with Periodic Inputs 129
3.7 Limitations of Fourier Series 130

Objective Brain Teasers 131

Conventional Brain Teasers 136

CHAPTER 4

Continous Time Fourier Transform....... 144-193
4.1 Introduction 144
4.2 The Definition 144
43 Fourier Transform of Some Basic Signals................... 145

4.4 Inverse Fourier Transform of Some Basic Functions....149

4.5 Properties of Fourier Transform .........eeenseennnns 154
4.6 Fourier Transform of Periodic Signal........cccccoueeeuce. 171
4.7 Application of Fourier Transform .........cceeeeeeeveerienne 173
4.8 Ideal and Practical Filters 175
49 Energy Spectral Density (ESD).....cocoveeereeeeerseenserennens 176
4.10 Power Spectral Density (PSD) 177
4.11  Correlation 177
4.12  Limitation of Fourier Transform and its Solution.... 180

Objective Brain Teasers 181

Conventional Brain Teasers 187

CHAPTER 5

Laplace Transform..........ccoooooveeueeemuenennen. 194-246

5.1 Introduction 194
52  The Definition 194
53 Relationship between Laplace Transform

and Fourier Transform 195
5.4  Eigen Value and Eigen FUNCLION ......coovcumereenerrereccins 195
55 Region of Convergence (ROC) for Laplace Transform...196
5.6 Laplace Transforms to Some Basic Signals................ 197
57 Properties of Laplace Transform........ccc.cceeeeemnrrvnnenns 205
5.8 Inverse Laplace Transform 212
5.9 LTI System and Laplace Transform........cecveeeeecneeees 217
5.10 Interconnection of LTI Systems (Block Diagrams)..... 222
511 Laplace Transform of Causal Periodic Signals.......... 223
5.12  Unilateral Laplace Transform 225

5.13  Properties of Unilateral Laplace Transform (ULT)... 227
5.14  Application of Laplace Transform
in Solving Differential EQuUations.........c..coecevvneevenenene 232

Objective Brain Teasers 236

Conventional Brain Teasers 243




Signals and Systems

CHAPTER 6 8.11  Application of DTFT 350

8.12  Ideal and Practical Filters 351
Sampling .................................................... 241-267 8.13  Relationship between CTFT and DTFT coevoverovcresen 355
6.1 Introduction 247 8.14  Energy Spectral Density 356
6.2  The Sampling Theorem 247 8.15  Power Spectral Density: (PSD) 356
6.3  Sampling Techniques 251 8.16  Correlation 356
64  Sampling Theorem for Band Pass Signals................. 253 Objective Brain Teasers 358
6.5  Reconstruction of Signal 255 Conventional Brain Teasers 362

Objective Brain Teasers 260

Conventional Brain Teasers 263
CHAPTER 9

Discrete Fourier Transform (DFT)......... 366-388

9.1 Introduction 366
A1 [ :11 5 {111 | 268-321 92 The Definition 367
7.1 Introduction 268 93  Properties of DFT 371
7.2 The Definition 269 94  Introduction to FFT (Fast Fourier Transform)......... 377
7.3 Region of Convergence for z-transform..........c.c...... 269 Objective Brain Teasers 378
74  z-Transform of Some Basic Signals ........cccceuuuuueveunes 272 Conventional Brain Teasers 382
7.5 Properties of z-Transform 280
7.6  Inverse z-Transform 288
CHAPTER 10
7.7 Discrete-time LTI Systems and z-Transform.............. 295
78 2Transform of Causal Periodic SIgals...... 302 Digital FIILETS v 389-448
7.9 Relation between Laplace Transform & z-Transform....302 101 Introduction 389
7.10  Unilateral z-Transform 304 102 Filter Basics 389
711 P ti f Unilateral z-t f (074 ) I 305
roperties of Unilateral z-transform (UZT) 103 Butterworth Filters 390
7.12  z-Transform Solution of Linear Difference Equations...308 L
104 Digital Filters 392
Objective Brain Teasers 312
10.5 Basics Structures for lIR SyStems ........cocccoveceereceerecenne 393
Conventional Brain Teasers 319
10.6  Basic Structures for FIR Systems.........ccoec.ommreermsereseneens 405
CHAPTER 8 10.7  lIR Filter Design from Continuous-Time Filters........ 409
10.8 Impulse Invariant Method 409
Fourier Analysis of Discrete Time Sig“alsm 328_365 10.9  Design of IIR Filter by Approximation of Derivatives...415
8.1 Introduction to Discrete Time Fourier Series (DTFS) ...328 10.10 IR Filter Design by the Bilinear Transformation...... 418
8.2  The Definition 328 10.11 Design of FIR Filters 423
8.3 Properties of DTFS 330 10.12 Design of Linear Phase FIR Filters using Frequency
84  Introduction to Discrete Time Fourier Transform... 330 Sampling Method 433
8.5  The Definition: DTFT 330 10.13 Lattice Structure of FIR Filter 435
8.6  DTFT of some Basic Signals 332 10.14 Comparison of Designing Methods.............ccoevceneeenn. 442
87  Properties of DTFT 337 10.15 Comparison between FIR and IIR Filter..............c....... 443
8.8  Fourier Transform Pairs Using Inverse DTFT............. 346 Objective Brain Teasers 444
8.9  Fourier Transform of Periodic Signals.......cccceeceunneees 348 Conventional Brain Teasers 446
8.10 LTI System Analysis and DTFT 349




Signals and Systems

INTRODUCTION TO SIGNALS AND SYSTEMS

This book starts with basic and extensive chapter on signals in which continuous
and discrete-time case are discussed in parallel. A variety of basic signals, functions
with their mathematical description, representation and properties are incorporated.
A substantial amount of examples are given for quick sketching of functions. A
chapter on systems is discussed separately which deals with classification of
systems, both in continuous and discrete domain and more emphasize is given to
LTI systems and analytical as well as graphical approach is used to understand
convolution operation. These two chapters makes backbone of the subject.

Further we shall proceed to transform calculus which is important tool of signal
processing. A logical and comprehensive approach is used in sequence of chapters.
The continuous time Fourier series which is base to the Fourier transform, deals
with periodic signal representation in terms of linear complex exponential, is
discussed.

The Fourier transform is discussed before Laplace transform. The sampling, a
bridge between continuous-time and discrete-time, is discussed to understand
discrete-time domain.

A major emphasis is given on proof of the properties so that students can understand
and analyzes fundamental easily.

A point wise recapitulation of all the important points and results in every chapter
proves helpful to students in summing up essential developments in the chapter
which is an integral part of any competitive examination.




CHAPTER

Introduction to Signals

1.1 INTRODUCTION

A signal is any quantity having information associated with it. It may also be defined as a function of one
or more independent variables which contain some information.
The function defines mapping from one set to another
and similarly a signal may also be defined as mapping from one
set (domain) to another (range). e.g.
e A speech signal would be represented by acoustic pressure as a function of time.
e A monochromatic picture would be represented by brightness as a function of two spatial variables.
e Avoltage signal is defined by a voltage across two points varying as function of time.
e Avideo signal, in which color and intensity as a function of 2-dimensional space (2D) and 1-dimensional
time (i.e. hybrid variables).

- In this course of “signals and systems”, we shall focus on signals having only one variable and will
2| /| consider time’ as independent variable.

1.2 ELEMENTARY SIGNALS

These signals serve as basic building blocks for construction of somewhat more complex signals. The
list of elementary signals mainly contains singularity functions and exponential functions.

These elementary signals are also known as basic signals/standard signals.

Let us discuss these basic signals one-by-one.

1.2.1 Unit Impulse Function

A continuous-time unit impulse function §(t), also called as Dirac delta function is defined as

o, t=0 T o0
diy=14_" d [ 8(t)at=1 1
9 0, otherwise _-I; U
The unit-impulse function is represented by an arrow with strength
of ‘1" which represents its ‘area’ or ‘weight'. 0 t
MRDE ERSY www.madeeasypublications.org Theory with | |y
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The above definition of an impulse function is more generalised and can be represented as limiting
process without any regard to shape of a pulse. For example, one may define impulse function as a limiting case
of rectangular pulse, triangular pulse Gaussian pulse, exponential pulse and sampling pulse as shown below:

SI. No. Type of Impulse Graph
p(t)
1
2¢e
1. Rectangular Pulse l_,_
P
d=(t)lim p(t)
£—0 1
27,
-, L[0! T, t
|
I 28 I
A(t)
1
2. Triangular Pulse T
t
lim 1 1—U tl<t X
¥t)=4101T T T,
0 t]>r
-, T 0 — 1 t
A(t)
1
3. Gaussian Pulse T
1 2.2 L
t)=lim—|e™" ]
6() T—)OT[ B
0 t
A(t)
.1
21,
4, Exponential Pulse
1 [ el A
o] :
&) ‘ETOZT ° T2
0 t
5. Sampling Function k,
| =Sa(kt)dt =1
T
~_ "\ AN
~ N7 T\ T
MBDE ERSY Theory with
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Properties of Continuous Time Unit Impulse Function

(i) Scaling property:
d(at) = ﬁa(t) ; 'a'is a constant, postive or negative
a
Proof:
E
|al

Integrating above equation on both the sides with respectto ‘'t

Sat) = —8(1)

+oo +oo 1
[s@nat = | o0
Let at=r1

a-dt= gt ; ‘a is a constant, positive or negative

or lal - dt= &
too +oo +oo 1
Now, fS(at)dt = j5(1)~% = jHS(t)-dt
+eo +oo
By definition, [ 8t = [ dx)dr=1

(ii) Product property/multiplication property:
x(1)8(t —t,) = x(t,)8(t —t,)

Proof:
The function §(t - 1) exists only at t = t . Let the signal x(f) be continuous at t = t .

Therefore, (0 8(t-t) = x(Bf_, S(t=1t,)

= x(t) 8(t—1,)

j’fé‘ Important Expressions
R
dattb) = éé&(z‘ig) o J(-t)=08(t) -+ &(t)isan even function of time.
o x(t)8(t) = x(0) &(1) o [ x030at=x0)

(iii) Sampling property:
+oo
[ x(t)8(t — to)dt = x(t,)

)

Proof :
Using product property of impulse function

x(1) 8(t 1) = x(t) 8(t—t.)

MRDE ERSYH www.madeeasypublications.org sm‘,J“Eﬁgnﬁfg; IN
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Integrating above equation on both the sides with respectto ‘'t

Tx(t) S(t—-t,)dt Tx(t) S(t-t,)dt

—oo —oo

x(t,) f 8(t - t,)dt = x(t.)

(iv) The first derivative of unit step function results in unit impulse function.

da

80 = 5

u(t)

Proof :
Let the signal x(f) be continuous att = 0.

oo
Consider the integral J' %[u(z‘)] x(t)at

[u)=@)]'" - | ¥ uot

x(e) = [x(B) d(t) = x(eo) - [x(O]5
0
= x(0) (1)
We know from sampling property  x(0) = Tx(t) 8(t) at (i)

—oo

From equations (i) and (ii), we get

| %[U(t)] x(t)at = [ x(0)8(0) at

—co —oo

d

On comparing, we get &(f) = Eu(z‘)
(v) Derivative property:
tz . th . .
j x(1)8"(t — t,)dt = (=1)"x"(t) -ty <ty <ty and suffix n means n"' derivative
t=ty
t
where, 57(t—£) = 9 (1)
o dx"

Proof:

Let the signal x(f) be continuous at t = {; where t, < {,< t,.

Consider the derivative %[x(z‘) 8(t—ty)] = (O (t—1tp)+x'(t)d(t—15)
Integrating above equation on both the sides with respect to ‘t’.

tgd t to
| X0 S(t-to)]at = [ x(t) 8t~ to)at + [ x'(t) 8(t — o)t

ty Y t

MRDE ERSYH www.madeeasypublications.org sm‘,J“Eﬁ?inﬁgé IN
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t to
[ 208t = to)att + [ (1) 8(t - to)alt

[1 [1

[x(0) 8(t 1))

[ 2(0) 8t = to)ait + [ /(1) 8(t — 1)t

[1 [1

Here, &(t, -t,) =0and d(f,-t,) =0 because t,# t, or t, # t,

[x(to) 8(t> —to) — x(ty) 8(t; — 1p)]

to to
[ x(t) 8°(t = to)dlt + | x(1)8(t — to)alt

[1 [1

So, 0

[2 f2
[x0) 8t -t)at = (=) [x(t)8(t—t)at (v using sampling property)
f ty

- = (1) x(t,)
t

Hence, [ x(t) 8/t - to)alt
4]

If same procedure is repeated for second derivative, we get

=1)"x(t)

t
[ 2087t~ t)at = (-172x"(t,)
f
On generalising aforementioned results, we get
ty
[x0)8"(t-t)at = (~1)an(ty)

b

(vi) Shifting Property:
According to shifting property, any signal can be produced as combination of weighted and shifted
impulses.
oo
x(t)= [ x(t) 8(t - 1) dr

Proof:
Using product property

x(t) 8(t—ty) = x(t;) 8(t—t,)
Replacing t, by T

x(1) 8(t—1) = x(t) 8(t—1)
Integrating above equation on both the sides with respect to ‘t’.

+oo +oo

j x(t) 8(t - t)dt = j x(t) 8(t - 1)t

j:ox(r) S(t—rT)dr

—oco

x(l‘)TS(t —1)dt

x(t) -1 = j:ox(r) S(t—T)dr

—oo

MRDE ERSYH www.madeeasypublications.org 301veghg?(gnglig; IN
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+oo

x(t) = j x(t) 8(t — 1)t

—oo

(vii)  The derivative of impulse function is known as doublet function.

d
&'(t) = —4(t
(1) 5o
Graphically,
()

Area under the doublet function is always zero.
Discrete-Time Case

The discrete time unit impulse function §[n], also called unit sample sequence or delta sequence is

defined as
5l = 1, n=0 |
0, otherwise

-3 -2 - 0 1 2 3 ce-n

It is also known as Kronecker delta.
Properties of Discrete Time Unit Impulse Sequence

(i) Scaling property:
8[kn] = 8[n]; k is an integer

Proof:
By definition of unit impulse sequence
1, =0
=1 "
0, n=#0
Similarly, stk = | Kn=0
0, kn=0
0
1, n=—=0
’ 1, n=0
) ko ={o neo O
0, nx—#0
k
MRDE ERSYH www.madeeasypublications.org Theory with | |y
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(ii) Product property:
x[n]d[n — nyl = x[ng1d[n — ny]

From definition,

1 n=
d[n-ny] = {O, Zigz

We see that impulse has a non zero value only at n = n,

Therefore, x[n]8[n—ny] = x[n]| 8[n—ny]

n=np

x[n] 8[n—n,] = x[n,] 8[n—n,]

(iii) Shifting property:

+oo

x{nl= Y «[k18[n - K]

k=—oo

Proof:
From product property
x[n]8[n—ny] = x[ny] 8[n—n,]
Replacing n, by ‘K
x[n] 8[n— K] = x[K] 8[n— K]

- §j Anldn-kl= Y, xK18[n—k]

k= —oo k=—c

I}
=,
=)
Nl
g
S

|
Eay
I

S k15— K]

=3

k= —oo k

N xn]-1 = E‘: K] 8[n - K]
k=—

=3

x[n] = i x[k]8[n — K]
k=—

=3

(iv) The first difference of unit step sequence results in unit impulse sequence.

S[n]=u[n] —u[n-1]

Proof:
By definition of unit step sequence

unj = i d[n—kK]
k=0
= §[n]+ i&[n—k]
k=1
But, un-1] = iS[n—k]
k=1

un] = d8[n] + un-1]

MRDE ERSYH

MRDE ERSYH
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We get, d[n] = u[n] —un-1]
Graphically we can see,
. uln —1] -
1111 T |
0123 - 012 n n e n
Summary Table:
S.No. | Properties of CT unit Impulse Function | Properties of DT unit impulse sequence
o, t= K 1, ifn=0;
1. |8(@t)= and [3(t)dt =1 | §n]=
0, otherwise e 0, otherwise
2. | x(t) &t —ty) =x(t) Xt — o) x[n)&n — k] = x[k1§n — k]
d
3. t) :Eu(t) n] =u[n] —u[n —1]
4. j&t —1)dt=u(t) S 8n —k] = uln]
0 k=0
5. x(t)= f x(7)d(t —Tt)dT x[n]= Zx[k] n —kK]
6. | [ x(t)a(t—to)dt =x(t,) > xAn]dn —ng] = x[ng]
1
8(<’:7f)=m8(l‘)
&kn] =3 n]
7. 8(atib)=i8(tié)
lal '\ e
J-n]=gn]
&(—t)=48(t)
ty x(0), t<t<t
8. | [xt)s(t)dt = ! 2
4 0, otherwise
ty
o jx(t)sn (t —ty)dt =(=1)" x"(ty), t; <ty <ty
. b
where suffix n mean n™ derivative
d
10. S(t)y=—29(t
(t) dtS( )
MRDE ERSYH www.madeeasypublications.org Theory with | |y
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EXAMPLE : 1.1 The Dirac delta function §(t) is defined as
1; t=0
a) o(t)=
(2 3(1) {0; otherwise
w; t=0
b) 5(t) = ’
(b) 3(1) {0; otherwise
1;, t=0 T
c =4’ d =1
(©) 3(1) {O; otherwise :[OS(t)dt
w; t=0 T
(d) 8(t) = {o; otherwise 29 Ls(t)dt—1
Solution : (d)
EXAMPLE : 1.2 The integral [ S(t—%)Gsin(t) dt evaluate to
(a) 6 (b) 3
(c) 1.5 (d) O
Solution : (b)
Given signal is
x(t) = _J;S(t—gJBSintdt
By applying shifting property of unit impulse function
[ x)8(t=1)ah = (1)
N AT m
iad = 6-sin=
_[8(1‘ 6)63|n(t) at sm6
= 6><l=3
2
EXAMPLE : 1.3 If y(t) + jg’ y(t)x(t - 7)d7 = 8(t) + x(1), then p(t) is

(a) u(t) (b) 8(8)
(c) r(1) (d) 1
Solution : (b)

As we know that j yA) x(t =) dn = x(1)
o
So, y(t) = 8(t) satisfies the given equation

MRDE ERSYH

www.madeeasypublications.org solveghﬁ?ﬁnﬁfi
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EXAMPLE : 1.4 Which of the following is NOT a property of impulse function?
(a) x(t) 8(t—t)) = x(t)) 8(t—1t.)
(b) x(t) *8(t—t) = x(t- 1)
to

(c) | X(8(t —to) dt = x(t,) ity <t <ty
ty

T "
d t 3(t —ty) dt =——x(t
(d) Jx()dxn (-t = Zost)
Solution : (d)
By derivative property Jx(t) d S(t—t)at = (=)"x"(t)
O’x” t=tg

—oo

1.2.2 Unit Step Function

The continuous-time unit step function, also called “Heaviside” unit function, is defined as

1, t>0
H=4"
U0 {O, t<0

u(t)

t
The function value at t = 0 is indeterminate (discontinuous)

Properties of unit step function:

(i) The unit step function can be represented as integral of weighted, shifted impulses.
u(t) = [8(t - t)dk
0

Proof:
According to the shifting property  x(t) = Tx(r) S(t—1)dr
Let, x(t) = JE})

u(t) = +Jiou('c) S(t—1)dt

—oco

u(t) = _f dt-t)dh
0
Since, ut) =0 ; —e<1t<0

ut)=1;1>0

MRDE ERSYH www.madeeasypublications.org sm‘,J“Eﬁgnﬁfg; IN
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The odd component of the signal x(t) = e cost is
(a) cosh(2t)cost (b) —sinh (2t) cost

(c) —cosh(2t)cost (d) sinh(2t) cost

Fundamental frequency of periodic signal e/

is given as
(where misinteger and Nis the period of the signal)
N 2n
m| — N| —
(@) (27:) (b) ( m)
(©) m(%} (d) None of these

A discrete time system is given as:

x[n] = cos(ﬁj -sin(n—nj
4 4

The signal is
(a) periodic with 8
(c) periodic with 4

(b) periodic with 8(m + 1)
(d) non-periodic

The power of signal x[n] = (-1)"u[n]is__W.
A discrete time signal is given as

x[n] = Cos(%nj “(uln=uln-86])
The energy of the signal is J.

Two functions x[n] and y[n] are shown in following
figures.

x[n]

L

-4 -3-2-1 {01

-n
P O} then value of n, + o + Kis

if y[n]= ocx[

soox paciiace P

Q.7

Q.8

Q.9

MRDE ERSYH

Consider a discrete time signal as follows:

1 n=1
x[n]=1-1: n=-1
0 ; otherwise

If y[n] = x[n] + x[-n], then the energy of the
signal y[n] will be

(@ 0 (b) 1

(c) 2 (d) 4

A continuous time signal is defined as,

x(t) = 4003(@” 40°)+ 33in(4—;t+ 20°j .

3
The fundamental time period of x(1) is
(a) 30msec (b) 15msec
(c) 15sec (d) 30sec

The conjugate antisymmetric part of the
sequence, x(n) =[-5-3+2/,4/,8+9/] is
1

(@) [-4+4.5j,-2.5+2),-2j, - 2.5+2), 4+ 4.5]]
0

(b) [-4+4.5/,-25+2),2,25+2j 4+45]]
T

() [~4—-4.5j,—2.5+2j,-2j,2.5+2j, 4+ 4.5/]
T

(d) [-4-45j-25+2),-2j,2.5-2j— 4+ 4.5]]
T

Q.10 Consider the trapezoidal pulse x(t) shown in the

figure below:

-5 4 0
The energy of x(1) is

x(t)

t (sec)

-

Q.11 A signal x(t) is given by,

x(t)

. |
o 1 2 4 5
The value of the integrall

I = jx(—r+1)5'(r+2.5)dr is

—oco

MRDE ERSYH
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t
Q.12 For the signal x(f) shown below, the value of J' x(t) ch

—oco

t=05
(Upto two decimal places).
x(t)

1

DR

Q.13 Two signals x(t) and y(t) are shown below,
x(t)

T

~

o
[\CY) EEp——

4 ~0.75
4 |
If y(f) = ax(bt + c¢) then the value of 4a + b-c s
Q.14 The signal x(t)=u[cos%tj—u[—cos7ﬁ_-t shows the figure below,
x(t)
1
N /N /NN
5T2'T3Tr_z 0T 3T T 5T o7 t
2 2 2 2
x(t)
— 1 p—
(b) -
5T oy 3T 1 T |0 T 8T T 5T o7 f
2 2 2 2 2 2
x(t)
1
© 2T T T 2T
© 70 IV B & B R A F VA 77 t
2 2 2 2 2 2
e
x(t)
1
(d) 2T -T 0 T 2T ¢
| -1
MRDE ERSYH www.madeeasypublications.org Theory with | |y
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ANSWERS KEY

1. (b) 2. (¢ 3. (d) 4. (05 5.03)

6. (45 7. (a) 8. (0 9. (b) 10. (8.67)
11. (2.5) 12. (0.5) 13. (0) 14. (0
HINTS & EXPLANATIONS
1. [0
x(t) = e=?t cost
x(=t) = et cos(-t) = e?lcost
Odd component,
1
x,(t) = E[X(l‘) - x(-1)]
2t 2t ot ot
e~ —-¢€ e~ —-e
t = _ = — t -
x,(t) = cost 5 } Cos { 5 }
= x(t) = —sinh (2t) cost
[ 2 [@
Given: x[n] = g/@on

For x[n] to be periodic with periodicity ‘N’
x[n] = x[n+ N]

N ejmon — ejoao[n+N] =ejwon ejoaON
= eijN =1
o,N=2rm  where, mis any integer
m
= ®, = Zn[Nj
Bo
x[n] = cos D sin| 2
B 4 4
1
4 _m
o1 N
= m _ A which s irrational
N 8n

Hence, the signal is aperiodic.

n (0.5)

. 1 5
Power, P= lm n
N — 2N+1n:§;Nx [ ]
& 2n
P= Ilim -1
N—>w2N+1n§O( )
. N +1
= |im
N—e 2N + 1

By using L-Hospital’s rule,

1
P: —W=05W
2

[ 5. [E)

x[n] = cos— [uln] - u[n - 6]]
Energy, E-= i x%[n]
5 °
E=) [COS@}
n=0 3

2 2
= E = [cosOP + [cosg} + [COS%} +[cosm?

frfs] o151

,'5:1+1+1+1+l+l
4 4 4 4

E=3J

n (4.5)

By zero

—_—
Inerpolation

1.2 3n

lBy shifting by 3
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_ 1.
o = 5

So, ny+a+K=45

(a)

y[n] = x[n] +x[-n]=0

= Energy of y[n] = Y, |y(/7)|2 =0

EJ ©

x(t) = 4003(23—711 + 40°j+ 33in[%t + 20°)

x4(t) xo(t)

. —@ =>T—@— en
T3 "o, 2n/3
o _4n T - °m _9
5 T T s 2
I'=LCMof(T,, T,)
n _ 3 _6
T, 5/2 5

= T:3x5or6xg:153ec

9. [0)]

We know that the conjugate antisymmetric part
of signal is {M}

x*(=n) = [8-9/,-4/,-3-2j,- 5]
1

ook paciiace P
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So {W} will be

{—(8—9/>’—5—(—4/>,<—3+2/)—(—3—2/)4/—(—5)18—9/

2 2 2 2 2
T

— [4+45/,-25+2),2j,25+2) 4+45]]
T

m (8.67)

Energy of x(f), E

oo 5
[ x®f at = [|xof at
e 5

-4 0
2j(t+5)2dt+2jdt
-5 -4

m (2.5)

[ Mt + )8 (@ +25)0t = —x(-t+0)],__,;

-x/(3.5) = —[slope of x(f) at t = 3.5]
-5)
(3
[ 12. [OB)
X(8) = u(t) = 8(t—1) - 8(t—2) - 8(t-3) - 5(t—4) .....
t

j x(f)dt =) —ut—1)—ut-2)— u(t-3) .......

—oo

The integration of x(t) is shown as

.. From the figure,
t

[ x(t) ot

—oo

=05

=05
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[ 13. [U)

x(—5t) x[-5(t + 1.6)] —0.75x(-5 - 8)
,,,,,,,,,,,,,,, -2.4 -2 -1.6
1 \ : t
; t i/
t 24 -2 -16 ] -0.75

Y = -0.75x(-5t - 8)

a=-075
b=-5
c=-8

4a+b-c=4x(-075)-5+8=0

[ 14. [G)

We know that,
1 t>0 U(=t) = 1 ; t<O
ut) = 0 ; t<O “lo : t>0

; COSEZ‘>O
T

0 ; cos£t<0
T

1 cos£t<0
T

0 ; cosEz‘ >0
T
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4} CONVENTIONAL BRAIN TEASERS

Q.1 Determine the total energy of a raised cosine pulse x(t) defined

l[c:osZ nft+1], 1 stsi
2 2f of

x(1)

0 otherwise

I (sol)
12-bit
Energy of a signal is given by

<0 v2f 2
E - [[Pold= ] (E(cos2nft+1)j at _

—oo =1/2f

1/2f 1
.f [—(0082 2nft + 1+ 2cos 2nft)]dt
-1/2f

1/2f
1 COSZnﬁ)dt

1/2f 1 1
+ 1+ 2cos2nft) |dt = _[ —cosdnft+—+—+
8 8 4

i J- l(cos4nft+1

—1/27‘4 —1/2f
1/2f 1/2f
Over a period 'f cos4nft =0 ; _[ 2cos2nft =0
—1/2f —1/2f
1/2f 1/2f
3 3 3( 1 1 31 3
Hence E = —.dt=|=-t == —=+—|==.—="Joules
) 4!%8 (8 )1/2f 8(2f 2"] 8 f 8f

Q.2 Determine whether the following signals are energy signals or power signals and calculate their energy and
power respectively using basic relations.
(i) x(t)=sinwyt (i) x(f) = rect (/)

BN (sl

(i) Given, X(f) = sin?w,t
This is a squared sine wave. Hence it is periodic signal. So it can be a power signal and calculate the
power directly.
The normalized average power is:

T

1 2
p - ;@mﬁyx(m dt

Here [sin? ]2 = sin* oyt has some period Tand it is real. Hence, the above equation will be

;
1 4
= lim— sin" wyt dt
P = m 2T_J.T &)
It can be expanded by standard trigonometric relations as follows

.
P = lm— l3—40032mz‘+cos4ooz‘dz‘
8 0 0

T—e 2T r
T T T
_ lim - | 3 gt - Jim lj 4 cos2agt dt + lim —- [ 1 cosdngt ot
T—>2T °_8 T—=2T .8 T 2] .8
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13,7 3
= lim—=|t[, - = —
fmarglilr ~0+0=73

The power of the signal is finite and non-zero
Now, Normalized energy of signal,

) T T
2 I 2 2 T 1 T 3 T o 3 _
E= _J;|x(l‘)| at = T'me_jT(S'n wot) dt= Tlm:ng[S — 4C0S 2! + cosdmgt]dt = rl[llg[t]—T = Tlmong = oo

Hence it is a power signal with P = 3/8 watts

(i) Given, x(t) = rect(é)

t
The rect (;j function is given as:

T

t 1 for—-t<t<t
rect [—) = 2 2
T 0  otherwise

As shown in figure, it is a non-periodic function
x(t)
1

-1/2 0 T2 t

So it can be an energy signal and calculate the energy directly

oo 5 t/2 5

— t/2
E= [h@Fdt= | Ot _ 72,

—o0 -1/2

T 7T

2 2

The energy of the signal is finite and non zero

Now, Normalized power,
1 T 5 1 ‘L'/2 - 1
— Im—=1x®dt = Im—= | (Nt - |im —[t]=
P = Tﬁsz_ij( ) at - M»ZT!/Z() = Jim {1 =0

Hence it is an energy signal with £ = 1 joules.

Q.3 Consider asignal x[n],

where g[n] =8[n]
Nis an even integer with 0 < N < 4.
(i) Draw the waveform of signal x[n]. (ii) Find the power of the signal x[n].

5
(iii) Find the value of Y, x{n].
n=-4
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