

POSTAL BOOK PACKAGE 2024

CONTENTS

INSTRUMENTATION ENGINEERING

Objective Practice Sets

Electricity and Magnetism

1.	Vector Analysis
2.	Electrostatics
3.	Magnetostatics and Magnetic Circuits44 - 75
4.	Time Varying Electromagnetic Field76 - 85

Vector Analysis

MCQ and NAT Questions

Q.1 If $\vec{G} = 15r\hat{a}_{0}$ then $\oint \vec{G} \cdot \vec{dl}$ over the circular path

$$r = 2 \text{ m}, \ \theta = 30^{\circ}, \ 0 < \phi < 2\pi \text{ is}$$

- (a) 120π
- (b) 120
- (c) 60π
- (d) 60
- Q.2 Which of the following is true?

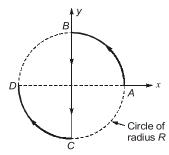
(a)
$$Curl(\vec{A} \cdot \vec{B}) = Curl \vec{A} + Curl \vec{B}$$

(b) Div
$$(\vec{A} \cdot \vec{B}) = \text{Div } \vec{A} \cdot \text{Div } \vec{B}$$

(c) Div (Curl
$$\vec{A}$$
) = 0

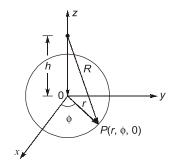
- (d) Div(Curl \vec{A}) = $\Delta \cdot \vec{A}$
- **Q.3** What is the value of the integral $\int d\vec{l}$ along the

curve c (c is the curve ABCD in the direction of the arrow)?

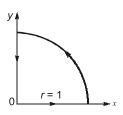


- (a) $2R(\hat{a}_x + \hat{a}_y)/\sqrt{2}$
- (b) $-2R(\hat{a}_x + \hat{a}_y)/\sqrt{2}$
- (c) 2Râ,
- (d) $-2R\hat{a}_v$
- **Q.4** If $uF = \nabla v$, where u and v are scalar fields and F is a vector field, then F. curl F is equal to
 - (a) zero
- (c) $\frac{(\nabla v \cdot \nabla) v}{v^2}$ (d) not defined

- Q.5 Laplacian of a scalar function V is
 - (a) Gradient of V
 - (b) Divergence of V
 - (c) Gradient of the gradient of V
 - (d) Divergence of the gradient of V
- **Q.6** The unit vector \vec{a}_R which points from z = h on the z-axis towards $(r, \phi, 0)$ in cylindrical co-ordinates as shown below is given by

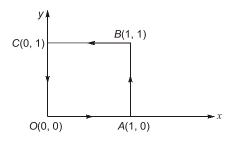


- (a) $\frac{h\vec{a}_r r\vec{a}_z}{\sqrt{r^2 + h^2}}$ (b) $\frac{r\vec{a}_r h\vec{a}_z}{\sqrt{r^2 + h^2}}$
- (c) $\frac{h\vec{a}_{\phi} r\vec{a}_{z}}{\sqrt{r^{2} + h^{2}}}$ (d) $\frac{r\vec{a}_{z} h\vec{a}_{\phi}}{\sqrt{-2 + h^{2}}}$
- **Q.7** Given a vector field $\overline{A} = 2r \cos \phi \hat{a}_r$ in cylindrical coordinates. For the contour as shown below, $\oint \overline{A} \cdot d\overline{l}$ is



- (a) 1
- (b) $1 (\pi/2)$
- (c) $1 + (\pi/2)$
- (d) -1

- Q.8 If $\vec{r} = x\hat{a}_x + y\hat{a}_y + z\hat{a}_z$ and $|\vec{r}| = r$ then find div $(r^2\nabla(lnr))$
- Q.9 Which of the following statements is not true of a phasor?
 - (a) It may be a scalar or a vector.
 - (b) It is a time dependent quantity.
 - (c) It is a complex quantity.
 - (d) All are true.
- Q.10 The maximum space rate of change of the function which is in increasing direction of the function is known as
 - (a) curl of the vector function
 - (b) gradient of the scalar function
 - (c) divergence of the vector function
 - (d) Stokes theorem
- **Q.11** Given vector $\vec{A} = x^2 y \, \hat{a}_x + 2xy^2 \hat{a}_y$, find circulation of \vec{A} along a closed path OABC as shown in figure below.



Q.12 Given a vector field \vec{F} . The Stoke's theorem states that,

(a)
$$\oint \vec{F} \cdot \vec{oll} = \iint (\vec{\nabla} \times \vec{F}) \cdot \vec{ols}$$

(b)
$$\oint \vec{F} \times \vec{al} = \iint (\vec{\nabla} \cdot \vec{F}) \vec{ds}$$

(c)
$$\int \vec{F} \cdot \vec{c} d\vec{l} = \int \int (\vec{\nabla} \times \vec{F}) \cdot \vec{c} d\vec{s}$$

(d)
$$\int \vec{F} \times \overrightarrow{dl} = \iint (\vec{\nabla} \cdot \vec{F}) \overrightarrow{ds}$$

Q.13 The vector \vec{A} directed from (2, -4, 1) to (0, -2, 0) in Cartesian coordinates is given by

(a)
$$-2\vec{a}_x + 2\vec{a}_y + \vec{a}_z$$
 (b) $-2\vec{a}_x + 2\vec{a}_y - \vec{a}_z$

(c)
$$-\vec{a}_x - 2\vec{a}_y + 2\vec{a}_z$$
 (d) $\vec{a}_x - 2\vec{a}_y - \vec{a}_z$

Q.14 The vector field given by

$$\vec{A} = yz\vec{a}_x + xz\vec{a}_V + xy\vec{a}_Z$$
 is

- (a) rotational and solenoidal
- (b) rotational but not solenoidal
- (c) irrotational and solenoidal
- (d) irrotational but not solenoidal
- **Q.15** If $\vec{A} = \frac{\vec{a}_x}{\sqrt{x^2 + y^2}}$, then the value of $\nabla \cdot \vec{A}$ at (2, 2, 0)

will be

- (a) -0.0884
- (b) 0.0264
- (c) -0.0356
- (d) 0.0542
- **Q.16** If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then the value of

$$\vec{i} \times (\vec{r} \times \vec{i}) + \vec{j} \times (\vec{r} \times \vec{j}) + \vec{k} \times (\vec{r} \times \vec{k})$$
 is

- (a) \vec{r}
- (b) $2\vec{r}$
- (c) $3\vec{r}$
- (d) $6\vec{r}$
- Q.17 What is the value of constant b so that the vector

$$\vec{V} = (x+3y)\vec{i} + (y-2x)\vec{j} + (x+bz)\vec{k}$$

is solenoidal?

- (a) 2
- (b) -1
- (c) 3
- (d) -2
- Q.18 For a vector field

 $\vec{A} = xyz^3\hat{a}_x + xy^3z\hat{a}_y + x^3yz\hat{a}_z$. Evaluate the surface integral for a surface of unit cube by $0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1$.

- Q.19 Which of the following option is not correct?
 - (a) A vector field \vec{A} is solenoid, if $\nabla \cdot \vec{A} = 0$
 - (b) A vector field \vec{A} is irrotational, if $\nabla \times \vec{A} = 0$
 - (c) A vector field V is harmonics, if $\nabla^2 V \neq 0$
 - (d) All options are correct
- **Q.20** Which of the following statements is not true regarding vector algebra?
 - (a) Dot product of like unit vector is unity.
 - (b) Dot product of unlike unit vector is zero.
 - (c) Cross product of two like unit vectors is a third unit vector having positive sign for normal rotation and negative for reverse rotation.
 - (d) All the above statements are true.

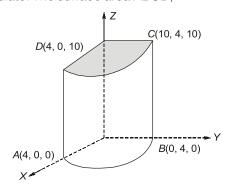
Q.21 A vector \vec{P} is given by

$$\vec{P} = x^3 y \vec{a}_x - x^2 y^2 \vec{a}_y - x^2 y z \vec{a}_z$$

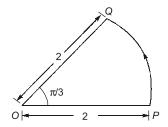
Which of the following statements is TRUE?

- (a) \vec{P} is solenoidal, but not irrotational
- (b) \vec{P} is irrotational, but not solenoidal
- (c) \vec{P} is neither solenoidal nor irrotational
- (d) \vec{P} is both solenoidal and irrotational
- Q.22 A rigid body is rotating with an angular velocity of ω where, $\vec{\omega} = \omega_x \vec{i} + \omega_y \vec{j} + \omega_z \vec{k}$ and v is the line velocity. If \vec{r} is the position vector given by $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then the value of curl \vec{v} will be equal to
 - (a) $1/2 \omega$
- (b) ω
- (c) $1/3 \omega$
- (d) 2ω
- Q.23 Which of the following identity is not true?
 - (a) $\vec{A}(\vec{B} \cdot \vec{C}) = (\vec{A} \cdot \vec{C})\vec{B} (\vec{A} \cdot \vec{B})\vec{C}$
 - (b) $\nabla \cdot (\nabla \times \vec{A}) = 0$
 - (c) $\nabla \times \nabla \phi \neq 0$
 - (d) None of the above
- Q.24 The value of divergence of a vector quantity $\vec{A} = 4xy \,\hat{a}_x + xz \,\hat{a}_y + xyz \,\hat{a}_z$ at a point P(1, -2, 3)will be
 - (a) 6
- (b) -16
- (c) -10
- (d) 12
- Q.25 Laplace equation in cylindrical coordinates is given by
 - (a) $\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{r \partial V}{\partial r} \right) + \frac{1}{r^2} \left(\frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} = 0$
 - (b) $\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$
 - (c) $\nabla^2 V = \frac{-\rho}{c}$
 - (d) $\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{r^2 \partial V}{\partial r} \right) + \left(-\frac{1}{r^2 \sin \theta} \right) \frac{\partial}{\partial \theta}$ $\left(\sin\theta \frac{\partial V}{\partial \theta}\right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2 V}{\partial \phi^2} = 0$

Q.26 Consider the object shown in figure below calculate. The surface area ABCD,



Q.27 If $\vec{A} = \hat{a}_0 + \hat{a}_0 + \hat{a}_z$, the value of $\oint \vec{A} \cdot \vec{dl}$ around the closed circular quadrant shown in the given figure is _____



Q.28 Given, $W = x^2y^2 + xy$, compute ∇W and the direction derivative $d\omega/dl$ in the direction,

$$\vec{A} = 3\hat{a}_x + 4\hat{a}_v + 12\hat{a}_z$$
 at (2, -1, 0) is _____.

- **Q.29** If \vec{E} is the electric field intensity then $\vec{\nabla} \times (\vec{\nabla} \cdot A)$ is equal to
 - (a) \vec{E}
- (c) Null vector
- Q.30 Divergence of the vector field,

 $V(x, y, z) = (x \sin xy)\hat{i} - (y \sin xy)\hat{i} + \sin z^2 \hat{k} \text{ is}$ Divergence = $2z \cos z^2$

- (a) $2z \cos z^2$
- (b) $\sin xy + 2z \cos z^2$
- (c) $x \sin xy \cos z$
- (d) none of these
- Q.31 The line integral of the vector field

 $\vec{F} = 5x\vec{i} + 3y\hat{j} + x^2z\hat{k}$ along a path from (0, 0, 0) to (1, 1, 1) parameterized by (t, t^2, t) is

Q.32 If the vector V given below is irrotational, then the values of a, b and c will be respectively

$$V = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$$

6

(2, 2, 0) \hat{n} (4, 4, 0)

Which of the following options is/are correct?

(a)
$$\iint_{S} \vec{F} \cdot \hat{n} ds = 80$$

(b)
$$\iint_{S} (\vec{F} \times \hat{n}) ds = 120\hat{a}_x - 112\hat{a}_y$$

(c)
$$\nabla \times \vec{F} = x^2 \hat{a}_x - 2xy \hat{a}_y - 2xy \hat{a}_z$$

(d)
$$\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} ds = -120$$

- **Q.46** If $[\vec{a}, \vec{b}, \vec{c}]$ represents the scalar triple product of vectors \vec{a}, \vec{b} and \vec{c} , then which of the below statements is/are true?
 - (a) $\left[\vec{a}, \vec{b}, \vec{c}\right] = \left[\vec{c}, \vec{b}, \vec{a}\right]$
 - (b) $\left[\vec{a}, \vec{b} + \vec{a}, \vec{c}\right] = 0$
 - (c) $\left[3\vec{b}, \vec{c}, \vec{a}\right] = 3\left[\vec{a}, \vec{b}, \vec{c}\right]$
 - (d) If $\left[\vec{a}, \vec{b}, \vec{c}\right] = 0$, the vectors \vec{a}, \vec{b} and \vec{c} are coplanar.

- **Q.47** The values of α for which the vectors $\vec{A} = \alpha \hat{a}_x + 2\hat{a}_y + 10\hat{a}_z$ and $\vec{B} = 4\alpha \hat{a}_x + 8\hat{a}_y 2\alpha \hat{a}_z$ are perpendicular is/are
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- Q.48 Which of the below vector identities are true?
 - (a) $A \times (B \times C) = (A \times B) \times C$
 - (b) $A \times (B \times C) + C \times (A \times B) + B \times (C \times A) = 0$
 - (c) $(B \times C) \times (C \times A) = C(A \cdot B \times C)$
 - (d) $(A \times B) \cdot (C \times D) = (A \cdot C)(B \cdot D) (A \cdot D)(B \cdot C)$
- **Q.49** For the scalar function, $\phi = x^2yz^3$, which of the below statements is/are correct?
 - (a) From the point (2, 1, -1) the directional derivative of ϕ is maximum in the direction represented by vector $-12\hat{i} 4\hat{j} + 4\hat{k}$.
 - (b) The magnitude of greatest rate of change of ϕ from the point (2, 1, -1) is $4\sqrt{11}$.
 - (c) (x-2)+(y-1)-3(z+1)=0 represents the tangent plane to the surface $\phi=0$ at point (2,1,-1).
 - (d) φ satisfies the Laplacian equation.

Answers		Vector	Analysis										
1.	(c)	2.	(c)	3.	(d)	4.	(a)	5.	(d)	6.	(b)	7.	(a)
8.	(3)	9.	(a)	10.	(b)	11.	(0.33)	12.	(a)	13.	(b)	14.	(c)
15.	(a)	16.	(b)	17.	(d)	18.	(0.5)	19.	(c)	20.	(c)	21.	(a)
22.	(d)	23.	(c)	24.	(c)	25.	(a)	26.	(62.83)	27.	(2.09)	28.	(-1.15)
29.	(d)	30.	(a)	31.	(3.75)	32.	(a)	33.	(d)	34.	(129.43)	35.	(c)
36.	(d)	37.	(b)	38.	(2)	39.	(b)	40.	(a)	41.	(5)	42.	(c)
43.	(a, c,	d) 44 .	(b, d)	45.	(b, c)	46.	(c, d)	47.	(a, d)	48.	(b, c, d)	49.	(b, c)

Explanations Vector Analysis

1. (c)

For spherical coordinate systems,

$$\vec{dl} = r \sin\theta d\phi \hat{a}_{\phi}$$

$$\oint \vec{G} \cdot \vec{dl} = \int_{0}^{2\pi} 15r \hat{a}_{\phi} \cdot r \sin\theta d\phi \, \hat{a}_{\phi}$$

$$= 15 \cdot r^{2} \cdot \sin\theta (2\pi)$$

$$= 15 \cdot (2)^{2} \times \sin30^{\circ} (2\pi)$$

$$\oint \vec{G} \cdot \vec{dl} = 60 \pi$$

2. (c)

Divergence (Curl \vec{A}) = 0

3. (d)

$$\int_{AB} \overrightarrow{dl} = \int_{0}^{\pi/2} R \cdot d\theta \, \hat{a}_{\theta} = \frac{\pi}{2} R \, \hat{a}_{\theta}$$

$$\int_{BC} \overrightarrow{dl} = \int_{+R}^{-R} dl (-\hat{a}_{y}) = -2R \hat{a}_{y}$$

$$\int_{CD} \overrightarrow{dl} = \int_{-\pi/2}^{-\pi} R \cdot d\theta \, \hat{a}_{\theta} = -\frac{\pi}{2} R \, \hat{a}_{\theta}$$

$$\therefore \int_{C} \overrightarrow{dl} = \int_{AB} \overrightarrow{dl} + \int_{BC} \overrightarrow{dl} + \int_{CD} \overrightarrow{dl} = -2R \, \hat{a}_{y}$$

4. (a)

Given,
$$F = \frac{1}{u} \nabla v$$

$$\therefore \quad \text{Curl } F = \nabla \times \left(\frac{1}{u} \nabla v\right)$$
or,
$$\text{Curl } F = \nabla \frac{1}{u} \times \nabla v + \frac{1}{u} \nabla \times (\nabla v)$$

$$= \nabla \frac{1}{u} \times \nabla v$$

Hence, F. Curl
$$F = \frac{1}{u} \nabla v \cdot \left(\nabla \frac{1}{u} \times \nabla v \right) = 0$$

5. (d)

$$abla^2 V = \overline{\nabla} \cdot (\overline{\nabla} V)$$
= divergence of gradient of V

6. (b)

Let the unit vector be given by \vec{a}_R . Now, \vec{R} = Difference of two vectors $= r\vec{a}_r - h\vec{a}_z$

∴ Unit vector,
$$\vec{a}_R = \frac{\vec{R}}{|\vec{R}|} = \frac{r\vec{a}_r - h\vec{a}_z}{\sqrt{r^2 + h^2}}$$

7. (a)

$$\oint \vec{A} \cdot \vec{dl} = \int_0^1 2r \cos\phi \hat{a}_r \cdot dr \hat{a}_r
+ \int_0^{\pi/2} 2r \cos\phi \cdot r \, d\phi (\hat{a}_r \cdot \hat{a}_\phi)
+ \int_{01}^0 2r \cos\phi \cdot \hat{a}_r \cdot dr \hat{a}_r$$

As
$$\hat{a}_r \cdot \hat{a}_{\phi}$$
 and $\cos \frac{\pi}{2} = 0$

$$\therefore \quad \oint \vec{A} \cdot \vec{cll} = 1 + 0 + 0 = 1$$

8. (3)

$$\operatorname{div}(r^{2}\nabla(lnr)) = \operatorname{div}\left(r^{2}\left(\frac{\partial lnr}{\partial r}\hat{r}\right)\right)$$

$$= \operatorname{div}\left(r^{2} \cdot \frac{1}{|r|}\hat{r}\right) = \operatorname{div}(|r|\hat{r})$$
Since,
$$\operatorname{div}(\vec{A}) = \frac{1}{r^{2}} + \frac{\partial r^{2}A_{r}}{\partial r} + \frac{1}{r^{2}\sin\theta} + \frac{\partial \sin\theta A_{\theta}}{\partial \theta} + \frac{1}{r\sin\theta} \frac{\partial A_{\phi}}{\partial \phi}$$

$$\therefore \operatorname{div}(r^{2}\nabla(lnr)) = \operatorname{div}(\vec{r})$$

$$= \frac{1}{r^{2}} \frac{\partial r^{2}r}{\partial r} = \frac{1}{r^{2}} \frac{\partial r^{3}}{\partial r} = \frac{3r^{2}}{r^{2}}$$

$$\operatorname{div} = (r^{2}\nabla ln(r) = 3)$$

(a)

A phasor is always a vector quantity.

10. (b)

Gradient of a scalar;

 $\nabla A = \text{maximum rate of change of scalar } A$ with respect to given coordinates system.

11. (0.33)

In a closed path the circulation of vector \vec{A} is given as,

$$\oint \vec{A} \cdot \vec{cdl} = \int_{OA} + \int_{AB} + \int_{AB} + \int_{BC} + \int_{CO} (\vec{A} \cdot \vec{cdl})$$

$$\therefore \qquad \vec{A} = x^2 y \hat{a}_x + 2xy^2 \hat{a}_y$$

$$\vec{dl} = dx\hat{a}_x + d\hat{a}_y$$

$$\vec{A} \cdot \vec{dl} = A_x dx + A_y d_y$$

For path OA, dy = 0, y = 0, A = 0

For path AB, dx = 0, x = 1, $A = y\hat{a}_x + 2y^2\hat{a}_y$

and
$$\int_{AB} \vec{A} \cdot \vec{dl} = \int_{0}^{1} 2y^{2} dy = \left[\frac{2y^{3}}{3} \right]_{0}^{1} = \frac{2}{3}$$

For path BC, dy = 0, y = 1

$$F = x^2 \hat{a}_x + 2x \hat{a}_y$$

and
$$\int_{BC} \vec{A} \cdot \vec{dl} = \int_{1}^{0} x^{2} dx = \left[\frac{x^{3}}{3} \right]_{1}^{0} = -\frac{1}{3}$$

For path CO,

$$\int_{CO} \vec{A} \cdot \vec{dl} = 0$$

Hence, $\oint \vec{A} \cdot \vec{dl} = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$

13. (b)

The vector \vec{A} is given as

$$\vec{A} = (0-2)\vec{a}_x + [-2-(-4)]\vec{a}_y + (0-1)\vec{a}_z$$

$$x + [-2-(-4)]\vec{a}_y + (0-1)\vec{a}_z$$

$$(2, -4, 1) + [-2-(-4)]\vec{a}_y + (0-1)\vec{a}_z$$

$$(0, -2, 0) + [-2-(-4)]\vec{a}_y + (0-1)\vec{a}_z$$

14. (c)

The vector field \vec{A} will be irrotational, if $\nabla \times \vec{A} = 0$.

Now,
$$\nabla \times \vec{A} = \begin{vmatrix} \vec{a}_x & \vec{a}_y & \vec{a}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & xz & xy \end{vmatrix}$$

$$= \left[\frac{\partial}{\partial y} (xy) - \frac{\partial}{\partial z} (xz) \right] \vec{a}_x$$

$$+ \left[\frac{\partial}{\partial x} (xy) - \frac{\partial}{\partial z} (yz) \right] \vec{a}_y$$

$$+ \left[\frac{\partial}{\partial x} (xz) - \frac{\partial}{\partial y} (yz) \right] \vec{a}_z$$

$$= \left[x - x \right] \vec{a}_x + \left[y - y \right] \vec{a}_y + \left[z - z \right] \vec{a}_z$$

$$= 0$$

Hence, \vec{A} is irrotational.

The vector field \vec{A} will be solenoidal, if $\nabla \cdot \vec{A} = 0$

Here,

$$\nabla \cdot \vec{A} = \left(\vec{a}_x \frac{\partial}{\partial x} + \vec{a}_y \frac{\partial}{\partial y} + \vec{a}_z \frac{\partial}{\partial z} \right) \cdot (yz\vec{a}_x + xz\vec{a}_y + xy\vec{a}_z)$$

$$= \vec{a}_x \cdot \vec{a}_x \frac{\partial}{\partial x} (yz) + \vec{a}_y \cdot \vec{a}_y \frac{\partial}{\partial y} (xz) + \vec{a}_z \cdot \vec{a}_z \frac{\partial}{\partial z} (xy)$$

$$= 0 + 0 + 0 = 0$$

Hence, \vec{A} is solenoidal.

15. (a)

Given,
$$\vec{A} = \frac{1}{\sqrt{x^2 + y^2}} \vec{a}_x$$

$$\therefore \quad \nabla \cdot \vec{A} = \frac{\partial}{\partial x} (A_x) + \frac{\partial}{\partial y} (A_y) + \frac{\partial}{\partial z} (A_z)$$

$$= \frac{\partial}{\partial x} \left(\frac{1}{\sqrt{x^2 + y^2}} \right) + 0 + 0$$

$$= \frac{\partial}{\partial x} (x^2 + y^2)^{-1/2}$$

$$= -\frac{1}{2} (x^2 + y^2)^{-3/2} \cdot 2x$$

$$= \nabla \cdot \vec{A} = -\frac{x}{\sqrt{(x^2 + y^2)}(x^2 + y^2)}$$
Now, $(\nabla \cdot \vec{A})_{2,2,0} = -\frac{2}{\sqrt{(2^2 + 2^2)} \cdot (2^2 + 2^2)}$

$$= -\frac{2}{\sqrt{8}} = -0.0884$$

16. (b)

Given,
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$\therefore \qquad \vec{r} \times \vec{i} =$$

$$(x\vec{i} + y\vec{j} + z\vec{k}) \times \vec{i} = -y\vec{k} + z\vec{j}$$
Also,
$$\vec{i} \times (\vec{r} \times \vec{i}) =$$

$$\vec{i} \times (-y\vec{k} + z\vec{j}) = \vec{j}y + z\vec{k}$$
Similarly,
$$\vec{j} \times (\vec{r} \times \vec{j}) = \vec{i}x + \vec{k}z$$
and
$$\vec{k} \times (\vec{r} \times \vec{k}) = \vec{i}x + \vec{j}y$$
Thus,
$$\vec{i} \times (\vec{r} \times \vec{i}) + \vec{j} \times (\vec{r} \times \vec{j}) + \vec{k} \times (\vec{r} \times \vec{k})$$

$$= 2(x\vec{i} + y\vec{j} + z\vec{k}) = 2\vec{r}$$

17. (d)

Since vector \vec{V} is solenoidal, therefore

18. (0.5)

Given unit cube, therefore the limits of integration are 0 to 1 for dx, dy and dz.

$$\oint \vec{A} \cdot \vec{dS} = \iint_{00}^{11} A_x dy dz + \iint_{00}^{11} A_y dx dz + \iint_{00}^{11} A_z dx dy$$

$$= \iint_{00}^{11} xyz^3 dy dz + \iint_{00}^{11} xyz^3 dx dz + \iint_{00}^{11} x^3 yz dx dz$$

$$= I_1 + I_2 + I_3$$

$$\therefore I_1 = \iint_{00}^{11} yz^3 dy dz \qquad \text{(Since } x = 1 \text{ for } I_1\text{)}$$

$$= \left(\frac{y^2}{2}\right)_0^1 \left(\frac{z^4}{4}\right)_0^1$$

$$= \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$$

$$I_2 = \iint_{00}^{11} xz dx dz \qquad \text{(Since } y = 1 \text{ for } I_2\text{)}$$

$$= \left[\frac{x^2}{2}\right]_0^1 \left[\frac{z^2}{2}\right]_0^1$$

$$= \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$I_3 = \iint_{00}^{11} x^3 y dx dy \qquad \text{(Since } z = 1 \text{ for } I_3\text{)}$$

$$= \left(\frac{x^4}{4}\right)_0^1 \left(\frac{y^2}{2}\right)_0^1$$

$$= \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$$

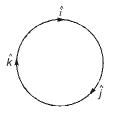
$$\therefore \oint \vec{A} \cdot \vec{dS} = \frac{1}{8} + \frac{1}{4} + \frac{1}{8} = \frac{1}{2}$$

19. (c)

A scalar field V is harmonics, if $\nabla^2 V = 0$. Hence, option (c) is not correct.

20. (c)

Option (c) is not correct because cross product of two unlike vectors is a third unit vector having positive sign for normal rotation and negative for reverse rotation while cross product of two like unit vectors is zero.



21. (a)

2024

BOOK PACKAGE

$$\vec{P} = x^3 y \vec{a}_x - x^2 y^2 \vec{a}_y - x^2 y z \vec{a}_z$$

For solenoidal, $\nabla \cdot \vec{P} = 0$

$$\Rightarrow \qquad \nabla \cdot \vec{P} = \frac{\partial P_x}{\partial x} + \frac{\partial P_y}{\partial y} + \frac{\partial P_z}{\partial z}$$
$$= 3x^2y - 2x^2y - x^2y$$
$$= 0$$

 $\Rightarrow \vec{P}$ is solenoidal

For irrotational, $\nabla \times \vec{P} = 0$

$$\Rightarrow \nabla \times \vec{P} = \begin{vmatrix} \vec{a}_x & \vec{a}_y & \vec{a}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^3 y & -x^2 y^2 & -x^2 yz \end{vmatrix}$$
$$= \vec{a}_x (-x^2 z) + \vec{a}_y (2xyz) + \vec{a}_z (-2xy^2 - x^3)$$
$$\neq 0$$

 $\Rightarrow \vec{P}$ is not irrotational.

22. (d)

Taking the curl, we have:

or,
$$\nabla \times \vec{V} = \nabla \times \vec{\omega} \times \vec{f} \text{ (Since } \vec{V} = \vec{\omega} \times \vec{f} \text{)}$$

$$\nabla \times \vec{V} = \begin{pmatrix} \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \end{pmatrix} \times \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \omega_x & \omega_y & \omega_z \\ x & y & z \end{vmatrix}$$

$$= \begin{bmatrix} \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \end{bmatrix} \times [\vec{i} (\omega_y z - \omega_z y)$$

$$+ \vec{j} (\omega_z x - \omega_x z) + \vec{k} (\omega_x y - \omega_y x)]$$

$$= (\vec{i} \times \vec{j}) \frac{\partial}{\partial x} (\omega_z x - \omega_x z) + (\vec{i} \times \vec{k}) \frac{\partial}{\partial x} (\omega_x y - \omega_y x)$$

$$+ (\vec{j} \times \vec{i}) \frac{\partial}{\partial y} (\omega_y z - \omega_z y)$$

$$+ (\vec{j} \times \vec{k}) \frac{\partial}{\partial y} (\omega_x y - \omega_y x) + (\vec{k} \times \vec{i})$$

$$\frac{\partial}{\partial z} (\omega_y z - \omega_z y) + (\vec{k} \times \vec{j}) \frac{\partial}{\partial z} (\omega_z x - \omega_x z)$$

$$= \vec{k} (\omega_z - 0) - \vec{j} (0 - \omega_y) - \vec{k} (0 - \omega_z)$$

$$+ \vec{i} (\omega_x - 0) + \vec{j} (\omega_y - 0) - \vec{i} (0 - \omega_x)$$

$$= \vec{i}(\omega_x + \omega_x) + \vec{j}(\omega_y + \omega_y) + \vec{k}(\omega_z + \omega_z)$$

$$= 2\omega_x \vec{i} + 2\omega_y \vec{j} + 2\omega_z \vec{k}$$

$$= 2(\omega_x \vec{i} + \omega_y \vec{j} + \omega_z \vec{k}) = 2\omega$$

$$\nabla \times \vec{v} = \text{Curl } \vec{v} = 2\omega$$

23. (c)

 $\vec{A} \times (\vec{B} \times \vec{C})$ is called "vector triple product" which is a correct expression.

$$\nabla = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right)$$
and let
$$\vec{A} = A_x \vec{i} + A_y \vec{j} + A_z \vec{k}$$

Then,
$$\nabla \times \vec{A} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$

$$\nabla \times \nabla \varphi = \left(\frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}\right) \times \left(\frac{\partial \varphi}{\partial x}\vec{i} + \frac{\partial \varphi}{\partial y}\vec{j} + \frac{\partial \varphi}{\partial z}\vec{k}\right)$$

$$= \left\{ (\vec{i} \times \vec{j}) \frac{\partial^2 \varphi}{\partial x \partial y} + (\vec{i} \times \vec{k}) \frac{\partial^2 \varphi}{\partial x \partial z} \right\}$$

$$+ \left\{ (\vec{j} \times \vec{i}) \frac{\partial^2 \varphi}{\partial x \partial y} + (\vec{j} \times \vec{k}) \frac{\partial^2 \varphi}{\partial y \partial z} \right\}$$

$$+ \left\{ (\vec{k} \times \vec{i}) \frac{\partial^2 \varphi}{\partial z \partial x} + (\vec{k} \times \vec{j}) \frac{\partial^2 \varphi}{\partial y \partial z} \right\}$$

$$= \vec{k} \frac{\partial^2 \varphi}{\partial x \partial y} - \vec{j} \frac{\partial^2 \varphi}{\partial x \partial z} - \vec{k} \frac{\partial^2 \varphi}{\partial y \partial x}$$

$$+ \vec{i} \frac{\partial^2 \varphi}{\partial y \partial z} + \vec{j} \frac{\partial^2 \varphi}{\partial z \partial x} - \vec{i} \frac{\partial^2 \varphi}{\partial z \partial y} = 0$$

24. (c)

Divergence of a vector

$$\overline{\nabla} \cdot \overline{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\overline{\nabla} \cdot \overline{A} = \frac{\partial}{\partial x} (4xy) + \frac{\partial}{\partial y} (xz) + \frac{\partial}{\partial z} (xyz)$$

$$= 4y + xy$$
At point, $P(1, -2, 3)$

$$\overline{\nabla} \cdot \overline{A} = 4(-2) + (1)(-2)$$

$$= -8 - 2 = -10$$

25. (a)

Laplace equation

$$\begin{split} &\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0\\ &\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0\\ &\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{r^2} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial^2 V}{\partial \phi^2} = 0 \end{split}$$

26. (62.83)

Although points *A*, *B*, *C*, *D* are given in Cartesian coordinate, it is obvious that the object has cylindrical coordinates. The points are transformed from Cartesian to cylindrical coordinates as follow:

$$A(4, 0, 0) \to A(4, 0, 0)$$

$$B(0, 4, 0) \to B\left(4, \frac{\pi}{2}, 0\right)$$

$$C(0, 4, 10) \to C\left(4, \frac{\pi}{2}, 10\right)$$

$$D(4, 0, 10) \to D(4, 0, 10)$$

For ABCD,

$$ds = \rho d\phi dz, \rho = 4, \text{ hence}$$

$$Area, \qquad ABCD = \int ds$$

$$= \int_{\phi=0}^{\pi/2} \int_{z=0}^{10} \rho d\phi dz$$

$$= 4 \int_{\phi=0}^{\pi/2} d\phi \int_{z=0}^{10} dz$$

$$= 4 \times \frac{\pi}{2} \times 10 = 20 \pi = 62.83$$

27. (2.09)

$$\oint \vec{A} \cdot \vec{dl} = \oint (\hat{a}_{\rho} + \hat{a}_{\phi} + \hat{a}_{z}) \cdot (d\rho \hat{a}_{\rho} + \rho d\phi \hat{a}_{\phi} + dz \hat{a}_{z})$$
For path $OP \Rightarrow$ only ρ is varying

$$\oint \vec{A} \cdot \vec{oll} = \int_{0}^{2} d\rho = 2$$