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Signals and Systems

INTRODUCTION TO SIGNALS AND SYSTEMS

This book starts with basic and extensive chapter on signals in which continuous
and discrete-time case are discussed in parallel. A variety of basic signals, functions
with their mathematical description, representation and properties are incorporated.
A substantial amount of examples are given for quick sketching of functions. A
chapter on systems is discussed separately which deals with classification of
systems, both in continuous and discrete domain and more emphasize is given to
LTI systems and analytical as well as graphical approach is used to understand
convolution operation. These two chapters makes backbone of the subject.

Further we shall proceed to transform calculus which is important tool of signal
processing. A logical and comprehensive approach is used in sequence of chapters.
The continuous time Fourier series which is base to the Fourier transform, deals
with periodic signal representation in terms of linear complex exponential, is
discussed.

The Fourier transform is discussed before Laplace transform. The sampling, a
bridge between continuous-time and discrete-time, is discussed to understand
discrete-time domain.

A major emphasis is given on proof of the properties so that students can understand
and analyzes fundamental easily.

A point wise recapitulation of all the important points and results in every chapter
proves helpful to students in summing up essential developments in the chapter
which is an integral part of any competitive examination.




CHAPTER

Introduction to Signals

1.1 INTRODUCTION

A signal is any quantity having information associated with it. It may also be defined as a function of one
or more independent variables which contain some information.
The function defines mapping from one set to another
and similarly a signal may also be defined as mapping from one
set (domain) to another (range). e.g.
e A speech signal would be represented by acoustic pressure as a function of time.
e Amonochromatic picture would be represented by brightness as a function of two spatial variables.
e Avoltage signal is defined by a voltage across two points varying as function of time.
e Avideo signal, in which color and intensity as a function of 2-dimensional space (2D) and 1-dimensional
time (i.e. hybrid variables).

- In this course of “signals and systems”, we shall focus on signals having only one variable and will
2| /| consider time’ as independent variable.

1.2 ELEMENTARY SIGNALS

These signals serve as basic building blocks for construction of somewhat more complex signals. The
list of elementary signals mainly contains singularity functions and exponential functions.

These elementary signals are also known as basic signals/standard signals.

Let us discuss these basic signals one-by-one.

1.2.1 Unit Impulse Function

A continuous-time unit impulse function §(t), also called as Dirac delta function is defined as

o, t=0 T o0
s=1_" " d | 3(t)at =1 1
o 0, otherwise _-[O (t)
The unit-impulse function is represented by an arrow with strength
of ‘1" which represents its ‘area’ or ‘weight’. 0 t
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The above definition of an impulse function is more generalised and can be represented as limiting
process without any regard to shape of a pulse. For example, one may define impulse function as a limiting case
of rectangular pulse, triangular pulse Gaussian pulse, exponential pulse and sampling pulse as shown below:

SI. No. Type of Impulse Graph
p(t)
1
2¢e
1. Rectangular Pulse lT
P
§=(t) lim p(t)
€0 1
27,
-7, 1o T, t
|
I 28 I
A(t)
a1
2. Triangular Pulse T
t
lim 1 1—U tl<t X
¥t)=4101T T T,
0 Dt
-, T 0 — t
A(t)
1
3. Gaussian Pulse T
1 2,2 1
t)=lim—|e™’ ] T
&0 1:—)0’5[ 2
0 t
At)
.1
21,
4, Exponential Pulse
1 [ el A
il 2
&) ‘ETOZT ° T2
0 t
5. Sampling Function k,
| =Sa(kt)dt =1
T
~_ "\ AN
=N TS T
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Properties of Continuous Time Unit Impulse Function

(i) Scaling property:

5(at) = |;—|8(t)

1

la]

Proof: dat) = 3(t)

'a'is a constant, postive or negative

Integrating above equation on both the sides with respect to ‘t’.

+oo Foo 1
L S(at)dt = _joﬂés(t)dt

Let at=1
a-dt= dr ; ‘a'isaconstant, positive or negative ~ or  |al - dt=
= i at T e iy
Now, f&(at)dt = J'S(r)-H = faﬁ(t)-dt By definition, Is(t)dt = jé‘)(r)dr=1

(ii) Product property/multiplication property:

x(1)d(t - t,) = x(t,)0(t —t5)

Proof:

The function 8(t - 1) exists only at t = t . Let the signal x(f) be continuous at t = t .

Therefore, M(0)8(t-t) = ©(B_, St =to) =x(1) 8(t- 1)

| j fe“ Important Expressions
(e N
G

S(at+b) - éS(l‘ig)

. x(t) 8(t) = x(0) 8(t)

(iii) Sampling property:
+oo
[ x(t)8(t — to)dt = x(t,)

—oc0

Proof :
Using product property of impulse function

x(1) 8(t— 1) = x(t) 8(t—t.)

Integrating above equation on both the sides with respect to ‘t’.

+oo oo

[ x0)8(t=to)dt = [ x(t)8(t-t,)at = x(to)fa(t—ro)dr = x(t)

—oco —oco
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Solution :
(i) x(t)
A
/—x bfa(ub), b<t<-a
b -a 0 a b x(t)=1A -ast+a
1 1 1 I t A
P P ~p o (t=b), astsb
Pl gy |
R
P A
Tbhb-a |
a b dxt) A A
o —a 0 T Ta =55 {ut+b)-ult+ ay}-——{u(t-a) - u(t-b)}
. A
P Tb-al
L e
A
1 _Ia b_aa T d?x(t) A A
-b l 0 1 b ¢ o2 =m{5(t+b)+5(t—b)}—m{8(t+ a)+8(t—a)}
A
“b-a

(ii)

2 1 o 1 2 ¢
SN i i\
KSW/ 11 .gﬂ/
S PR
2 - 0\ |
ﬁf\ N t
X AN
:7/\ 'z/u

4 ) OBJECTIVE
BRAIN TEASERS
Q.1 The odd component of the signal x(t) =e? cost is Q.
(a) cosh(2t) cost (b) —sinh (2t) cost
(c) —cosh(2t)cost (d) sinh(2t) cost Q.
Q.2 A discrete time system is given as:

x[n] = cos(ﬁj -sin(n—nj
4 4

x(O)=r(t+2)—r(t+ 1) =r(t=1) + r(t-2)

The signal is
(a) periodic with 8
(c) periodic with 4

(b) periodic with 8(m + 1)

(d) non-periodic
3 The power of signalx[n] = (=1)"u[n]is W.

4 A discrete time signal is given as

x[n] = cos(%nj (uln]-uln-6])

The energy of the signal is

www.madeeasypublications.org

Theory with
Solved Examples



Signals and Systems
POSTAL . ;
MRDE ERSY BOOK PACKAGE 2025 Introduction to Signals 51

Q.5 Twofunctionsx[n] and y[n] are shown in following x(t)
figures. 1
x[n] X |
] ] e e
= _;1 5 éll s t (sec)
-4 -3-2-1 |01 2 3 4 n The energy of x(1) is .
Q.10 A signal x(t) is given by,
nl
x()
5 _______
01234567 |
I | " |
2_ 1 : 1 1
n - ny D v/ S t
If y[n]=ox | then value of ng + o + kis o 1 2 4 5 6 7
The value of the integral
Q.6 Consider a discrete time signal as follows: I= [ x(-t+)§(t+25)dtis
1 5 n=1 ,
Q.11 For the signal x(f) shown below, the value of
x[n]=1-1: n=-1 t
0 ; otherwise [ x(x) o is
oo t=05

If y[n] = x[n] + x[-n], then the energy of the

signal y[n] will be (Upto two decimal places).

(2) 0 (o) 1 0
(©) 2 (o) 4 1
1 2 3 4 5
Q.7 A continuous time signal is defined as, ‘ J j L } t
x(f) = 4003(2—;t+ 40°)+Ssin(%t+ 200) 25

Q.12 Two signals x(t) and y(t) are shown below,

The fundamental time period of x(1) is W)

(a) 30m sec (b) 15m sec X0 | 0.8 |
(c) 15sec (d) 30sec L E— _2}/—_2— 16
Q.8 The conjugate antisymmetric part of the ; ! t
sequence, x(n) =[-5-3+2/,4/,8+9]] is i | t
0 0 2 A 1-0.75
(8) [-4+4.5],-25+2]-2),~25+2j 4+ 4.5] ) | |
:

(b) [-4+4.5],-25+2),2],25+2j, 4+45]]
T

() [~4-4.5j,—2.5+2],-2j,2.5+2j, 4+ 4.5/]
T

ANSWERS KEY
(d) [4—45j-25+2),-2j,25-2j— 4+45]]
0

, _ _ 1. (b) 2. (d) 3. (05 4. (3) 5. (45
Q.9 Consider the trapezoidal pulse x(f) shown in the
figure below: 6. (@ 7. (0 8. (b) 9. (8.67)

10. (2.5) 11. (0.5) 12. (0)

MRDE ERSYH www.madeeasypublications.org Solveghlfz?cgnglig;
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HINTS & EXPLANATIONS

K ©

x(t) = e~? cost
x(=t) = et cos(-t) = e?lcost
Odd component,

U La(t) - x(-)]

xXo(t) =

2 lBy shifting by 3
-2t 2t 2t -2t
e~ —-¢e e~ —-e
x (t) = cost| ————| = —cost| ——
O( ) 2 :| |: 2 :| =112 x[n- 3] x[(n—3)/2]
= x(t) = —sinh (2t) cost { -2 ‘] """ T """ I
12 3 45 ~
2 [C) i T ot aisa
1
= M 2}, 41 1 [n-3 n-n,
oeelfelS) £E n e el
m 1 e
= — = — whichisirrational 1
N 8n (x:—E;no=3;K=2
Hence, the signal is aperiodic.
So, ny+a+K=45
EN 05 o [0
x[n] = (=1)"uln] ]
1 N
Power, P=lim DR
N — e 2N+1n:—N x[ﬂ]_} -1
N o 1 "
: 2n l N+1
P= lim (-0" =
N_)w2N+1n§::O N DN+ 1 3
1 1
By using L-Hospital’s rule, P = 2 W=05W ?
X[—ﬂ]—) ° 1 n
4. [8) T

Energy, E= Y, x°[n] = Energy of y[n] = i |y(’7)|2 =0

Nn=-—oo n=-—oo

5 2
E=Y [cos@} ()
n=0 3

2 x(f) = 4cos 2—nt+4O° +3sin ﬂt+20°
3 5

2
= E = [cosOP + [cosg} + [00323—“} +[cosm?

x4(t) xo(1)
3 2
{cos[ﬂﬂ +COS|:@} o = 2n 7 _2m_ 2nm _
3 3 L 3 1 o, 2n/3
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4) CONVENTIONAL BRAIN TEASERS

Q.1 Consider asignal x{n],

x[n] = i gln -kl + i g{%—k} where, g[n] = §[n]

k=—oco k=—co
Nis an even integer with 0 < N < 4.
(i) Draw the waveform of signal x[n]. (ii) Find the power of the signal x[n].

5
(iii) Find the value of Y, x{n].

n=-4
n (Sol.)

=

(i) k;msm-k]
SEREEa
b
T
X =

[
x[n] is periodic with period. M = 2.

1 1 5
(ii) Power of x(n] P.= =Y = -[4+1=2=25W

M~ 2 2

5
(iii) Yanl =2+1+2+1+2+1+2+1+2+1=15
n=-4
EEEN
MRDE ERSYH www.madeeasypublications.org Theory with
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CHAPTER

2.1 INTRODUCTION

Introduction to Systems

A system is an operator which maps the relation between input

signal and output signal by the process of transformation. A put S};Stem
system may also be defined as set of elements which produces expected Excitation t

Qutput

>
Response

output with available input. The examples of systems are electrical
system, mechanical system, electromechanical system etc.

In brief, a system is mathematical identity which maps a set of input (x(t) or x[n]) to set of output (y () or y[n]).

xy(t)
xp(t)

(t) x4[n] ———> —> y4[n]

— yo(t) xo[n] —— — ),[n]

System System

x,(t) (1) x,[n] > »,[n]

System may be multi-input multi-output systems. In this subject, we consider Single Input Single Output

(SISO) systems.

Methods of Representing Systems:

() Input-output relation W(t) = x2(t) or y[n]=x[n]
(i) Differential equation % + y(t) = x(2)

(a) Difference equation y[n] —y[n-1] = x[n]
(i) Transfer function equation {H(s), H(w), H(z)}, H(s) = r(s)

X(s)

(iv)  Impulse response equation (h(t), A[n]) y(t) = h(t) = x(f) or y[n] = h[n] * x[n]
(v) By its physical definition.

(vi)  Block diagram representation

() W or aim— s i

x(t) —— (1) x[n] —=— yIn]
(vii)  State variable approach

www.madeeasypublications.org
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2.2 CONTINUOUS-TIME AND DISCRETE-TIME SYSTEMS

A continuous time system (CTS) is one in which continuous time input signals are transformed into
continuous time output signals.

x(t) Continuous Time W(t)
System > (t)= T{x(8}
Input T} Output

e.g. integrator, differentiator, filters etc.

A discrete time system (DTS) is one which transform discrete time input signal into discrete time
output signal.

x[n] Discrete Time yin]
System ————————  y[n] = T{x(n)}
Input T} Output

Moreover, a continuous time signal can be processed by a discrete time system. This is done, because
discrete time systems have several significant advantages over continuous time systems.

x(t) Contmuotg/ltao Discrete | y(nT)=x{n] DTS yIn] Discrete to Continuous (0
t=nT BC

Figure: Transformation of continuous time signals using discrete time systems

2.3 CLASSIFICATION OF SYSTEMS

Systems are broadly classified into continuous time and discrete time systems both CTS and DTS are
further classified according to the way they interact with input signals. These are:

(@)  Linear and non-linear systems (b) Time variant and time invariant systems
(¢)  Causal and non causal systems (d) Static and dynamic systems
(e)  Stable and unstable systems (f) Invertible and non-invertible systems

2.3.1 Linear and non-linear systems

A system is said to be linear if it satisfies to properties: (i) Additivity (i) Homogeneity (scaling)
(i) Additivity

It states that, if an input x,(t) produces output y,(t), and another input x,(f) also acting along produces
output y,(t), then, when both inputs acting on the system simultaneously, produces output y,(t) + y,().

I x, () —S 5 y,() and x,(f) —S 5 y, (1)
then x4 (0) + x,(1) —S—5 y,(8) +p,(0)

Similarly, in discrete-time system

If x,[n] —S y,[n] and x,[n] —S 5 y,[n]
then xy[n] +x,[n] —5_5 y,[n]+y,[n]

MRDE ERSYH Theory with
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