

ELECTRONICS ENGINEERING

CONVENTIONAL Practice Sets

CONTENTS

COMMUNICATION SYSTEMS

1.	Theory of Random Variable and Noise	2 - 24
2.	Amplitude Modulation	25 - 42
3.	Angle Modulation	43 - 59
4.	AM Transmitters and Receivers	60 - 68
5.	Pulse Modulation	69 - 86
6.	Data Transmission Schemes	87 - 94
7.	Optimum Receivers for AWGN Channels	95 - 113
8.	Information Theory and Coding	114 - 132

Theory of Random Variable and Noise

Define PDF and summarise its important properties. Also calculate the probability of outcome of a Random Variable (RV) X having $X \le 1$ for the following PDF curve of RV as shown.

Solution:

Probability density function specifies the probability of a random variable taking a particular value.

The Probability Density Function (PDF) which is generally denoted by $f_{\chi}(x)$ or $P_{\chi}(x)$ or $P_{\chi}(x)$ is defined in terms of the Cumulative Distribution Function (CDF) $F_{\chi}(x)$ as,

$$PDF = f_X(x) = \frac{d}{dx} F_X(x)$$
...(i)

The PDF has the following properties:

- (i) $f_x(x) \ge 0$ for all x
 - This results from the fact that probability cannot be negative. Also, $F_X(x)$ increases monotonically, as x increases, more outcomes are included in the prob. of occurrence represented by $F_X(x)$.
- (ii) Area under the PDF curve is always equal to unity.

i.e.
$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1$$

(iii) The CDF is obtained by the result

CDF =
$$\int_{-\infty}^{x} f_X(x) dx$$

(iv) Probability of occurrence of the value of random variable between the limits of x_1 and x_2 is given by,

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} f_X(x) dx$$

Now consider the given PDF curve, since we have to find $P(x \le 1)$ so,

Equation for the PDF curve for $x \le 1$ is,

$$f_X(x) = \left(\frac{1}{12}x + \frac{1}{6}\right)$$

Now, $P(x \le 1)$

$$= P(-2 < x < 1) = \int_{-2}^{1} \left(\frac{1}{12}x + \frac{1}{6}\right) dx = \left[\frac{1}{12} \cdot \frac{x^{2}}{2} + \frac{1}{6}x\right]_{-2}^{1} = \frac{3}{8}$$

$$P(x \le 1) = \frac{3}{2}$$

Q2 Find the cumulative distribution function F(x) corresponding to the PDF $f(x) = \frac{1}{\pi(1+x^2)}$, $-\infty < x < \infty$.

Solution:

Given
$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty$$

$$F(x) = P(X \le x)$$

$$= \int_{-\infty}^{x} f(x) dx = \frac{1}{\pi} \int_{-\infty}^{x} \frac{dx}{1+x^2} = \frac{1}{\pi} \left[\tan^{-1} x \right]_{-\infty}^{x} = \frac{1}{\pi} \left(\frac{\pi}{2} + \tan^{-1} x \right)$$

Q3 Given the random variable X with density function

$$f_{\chi}(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

Find the PDF of $Y = 8 X^3$.

Solution:

Given
$$y = 8x^{3} \text{ is an increasing function in } (0, 1)$$

$$y = 8x^{3}$$

$$\Rightarrow x^{3} = \frac{y}{8}$$

$$\Rightarrow x = \left(\frac{y}{8}\right)^{1/3} = \frac{1}{2}y^{1/3}$$
and
$$f_{\chi}(x) = 2x, \qquad 0 < x < 1$$

$$f_{\chi}(y) = \frac{2y^{1/3}}{2} = \frac{y^{1/3}}{3}$$

$$f_{\gamma}(y) = x = \left(\frac{y}{8}\right)^{1/3} = \frac{1}{2}y^{1/3} \qquad \Rightarrow \frac{dx}{dy} = \frac{1}{6}y^{-2/3}$$
Using it in (i)
$$f_{\gamma}(y) = y^{1/3} \frac{1}{6}y^{-2/3} = \frac{1}{6}y^{-1/3} = \frac{1}{6}\frac{1}{y^{1/3}} = \frac{1}{6}\frac{1}{3\sqrt{y}}$$

The range for x is 0 < x < 1

When x = 0, $y = 8 \times 0 = 0$ and x = 1, $y = 8 \times 1^3 = 8$

$$f_{\gamma}(y) = \frac{1}{6\sqrt[3]{y}}, \qquad 0 < y < 8$$

A BSC (Binary Symmetric Channel) error probability is P_e . The probability of transmitting '1' is Q, and that of transmitting '0' is (1 - Q) as in figure below. Calculate the probabilities of receiving 1 and 0 at the receiver?

Solution:

If x and y are the transmitted digit and the received digit respectively, then for a BSC,

$$P_{y|x}\left(0|1\right) = P_{y|x}\left(1|0\right) = P_{e}$$

$$P_{y|x}\left(0|0\right) = P_{y|x}\left(1|1\right) = 1 - P_{e}$$
Also,
$$P_{x}(1) = Q \text{ and } P_{x}(0) = 1 - Q$$
We have to find,
$$P_{y}(1) \text{ and } P_{y}(0) = ?$$

$$P_{y}(1) = P_{x}(0) P_{y|x}(1|0) + P_{x}(1) P_{y|x}(1|1) = (1 - Q)P_{e} + Q(1 - P_{e})$$
also,
$$P_{y}(0) = P_{x}(0)P_{y|x}(0|0) + P_{x}(1) P_{y|x}\left(0|1\right) = (1 - Q)(1 - P_{e}) + QP_{e}$$

Q.5 For the triangular distribution

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2 \\ 0, & \text{otherwise} \end{cases}$$

Find the mean and variance.

Solution:

Mean =
$$E(X) = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} x \cdot x \, dx + \int_{1}^{2} x(2-x) \, dx = \int_{0}^{1} x^{2} \, dx + \int_{1}^{2} (2x-x^{2}) \, dx$$

$$= \left[\frac{x^{3}}{3}\right]_{0}^{1} + \left[2\left(\frac{x^{2}}{2}\right) - \frac{x^{3}}{3}\right]_{1}^{2}$$

$$= \frac{1}{3} + \left[\left(4 - \frac{8}{3}\right) - \left(1 - \frac{1}{3}\right)\right] = \frac{1}{3} + \frac{4}{3} - \frac{2}{3} = 1$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{1} x^{2} x \, dx + \int_{1}^{2} x^{2} (2-x) \, dx$$

$$= \int_{0}^{1} x^{3} \, dx + \int_{1}^{2} (2x^{2} - x^{3}) \, dx = \left[\frac{x^{4}}{4}\right]_{0}^{1} + \left[2\left(\frac{x^{3}}{3}\right) - \frac{x^{4}}{4}\right]_{1}^{2}$$

$$= \frac{1}{4} + \left[\left(\frac{16}{3} - \frac{16}{4}\right) - \left(\frac{2}{3} - \frac{1}{4}\right)\right] = \frac{1}{4} + \frac{16}{3} - 4 - \frac{2}{3} + \frac{1}{4} = \frac{7}{6}$$

$$Var(X) = E(X^{2}) - E(X)^{2} = \frac{7}{6} - (1)^{2} = \frac{1}{6}$$

Q6 The joint density function of two continuous random variables is given by

$$f(x, y) = \begin{cases} xy/8, & 0 < x < 2, 1 < y < 3 \\ 0, & \text{otherwise} \end{cases}$$

Find (a) E(X), (b) E(Y) and (c) E(2X + 2Y).

Solution:

(a)
$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x, y) dx dy = \int_{x=0}^{2} \int_{y=1}^{3} x(xy/8) dx dy = \frac{4}{3}$$

(b)
$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y) dx dy = \int_{x=0}^{2} \int_{y=1}^{3} y(xy/8) dx dy = \frac{13}{6}$$

(c)
$$E(2X+3Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (2x+3y) dx dy = \int_{x=0}^{2} \int_{y=1}^{3} (2x+3y)(xy/8) dx dy = \frac{55}{6}$$

Let z be a random variable with probability density function $f_z(z) = \frac{1}{2}$ in the range $-1 \le z \le 1$. Let the random variable x = z and the random variable $y = z^2$. Obviously x and y are not independent since $x^2 = y$. Show that x and y are uncorrelated.

Solution:

We have,
$$E(z) = \int_{-1}^{1} z \cdot f_{Z}(z) dz$$

 $\Rightarrow \qquad E(z) = \frac{1}{4} [z^{2}]_{-1}^{1} = 0$
Since, $x = z$, so $E(x) = E(z) = 0$
Since, $y = z^{2}$ so $E(y) = E(z^{2})$
So that, $E(y) = \int_{-1}^{1} \frac{1}{2} z^{2} dz = \frac{1}{6} [z^{3}]_{-1}^{1} = \frac{1}{3}$

We know that, the co-variance ' μ ' of two RVs x and y is defined as,

$$\mu = E\{(x - m_x)(y - m_y)\}\$$

$$= E\{(x)\left(y - \frac{1}{3}\right)\} = E\{xy - \frac{1}{3}x\} = E\{z^3 - \frac{z}{3}\} = \int_{-1}^{1} \frac{1}{2}\left(z^3 - \frac{z}{3}\right)dz$$

$$\mu = 0$$

Now, correlation coefficient between the variables x and y is defined by quantity ' ρ ' as,

$$\rho = \frac{\mu}{\sigma_r \sigma_v} = 0$$

So, we can say that these RV's X and Y are uncorrelated.

Q.8 A WSS random process x(t) is applied to the input of an LTI system with impulse response $h(t) = 3e^{-2t} u(t)$

Find the mean value of the output y(t) of the system, if E[x(t)] = 2. Here $E[\cdot]$ denotes the expectation operator.

Solution:

The output y(t) is the convolution of the input x(t) and the impulse response h(t).

$$y(t) = \int_{-\infty}^{\infty} h(\tau) \cdot x(t - \tau) \cdot d\tau$$

$$E[y(t)] = \int_{-\infty}^{\infty} h(\tau) \cdot E[x(t - \tau)] \cdot d\tau$$

$$E[y(t)] = H(0) \times E[x(t)]$$

$$E[y(t)] = E[x(t)] \cdot H(0)$$

where, $H(0) = H(\omega)\big|_{\omega = 0}$ and $H(\omega) = \text{Fourier transform of } h(t)$

Given
$$E[x(t)] = 2$$
,

$$h(t) = 3e^{-2t}u(t)$$

Taking Fourier transform,

$$H(\omega) = \frac{3}{2 + i\omega} \implies H(0) = \frac{3}{2}$$

$$E[y(t)] = 2 \times \frac{3}{2} = 3$$

Suppose that two signals $s_1(t)$ and $s_2(t)$ are orthogonal over the interval (0, T). A sample function n(t) of a zero-mean white noise process is correlated with $s_1(t)$ and $s_2(t)$ separately, to yield the following variables:

$$n_1 = \int_0^T s_1(t) n(t) dt$$
 and $n_2 = \int_0^T s_2(t) n(t) dt$

Prove that n_1 and n_2 are orthogonal.

Solution:

$$E[n_1 n_2] = E \left[\int_0^T s_1(u) n(u) du \int_0^T s_2(v) n(v) dv \right]$$
$$= \int_0^T \int_0^T s_1(u) s_2(v) E[n(u) n(v)] du dv$$

n(t) is a white noise process.

So,
$$R_{N}(\tau) = \frac{N_{0}}{2}\delta(\tau)$$

$$E[n(u)n(v)] = \frac{N_{0}}{2}\delta(u-v)$$
Hence,
$$E[n_{1}n_{2}] = \frac{N_{0}}{2}\int_{0}^{T}\int_{0}^{T}s_{1}(u)s_{2}(v)\delta(u-v)dudv$$

$$= \frac{N_{0}}{2}\int_{0}^{T}s_{1}(u)s_{2}(u)du$$

$$= 0 \qquad \therefore s_{1}(t) \text{ and } s_{2}(t) \text{ are orthogonal over } (0, T)$$

 $E[n_1n_2] = 0$. So, n_1 and n_2 are also orthogonal.

Q.10 Find the time autocorrelation function of the signal $g(t) = e^{-at} u(t)$ and from this obtain the energy spectral density (ESD) of g(t).

Solution:

Auto correlation function,

$$R_{x}(\tau) = \int_{-\infty}^{\infty} g(t) g(t - \tau) dt = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-a(t - \tau)} u(t - \tau) dt$$

$$= \int_{\tau}^{\infty} e^{-2at} e^{a\tau} dt = e^{a\tau} \int_{\tau}^{\infty} e^{-2at} dt = \frac{e^{a\tau}}{-2a} \left[e^{-2at} \right]_{\tau}^{\infty} = \frac{e^{a\tau}}{2a} e^{-2a\tau} = \frac{e^{-a\tau}}{2a}$$

Similar process is valid for negative side because for real g(t), $R_{\nu}(\tau)$ is even function of time

$$R_{x}(\tau) = \frac{e^{-a|\tau|}}{2a}$$

Now we know that

$$R_{x}(\tau) \xrightarrow{F.T} S_{x}(\omega)$$

Energy spectral density

$$S_{x}(\omega) = \frac{1}{\omega^{2} + a^{2}} \triangleq |G(\omega)|^{2}$$
, where $G(\omega) = F.T[g(t)]$

- Q.11 If the input to a low-pass filter as shown below in Figure is a random process x(t) with autocorrelation function, $R_{\nu}(\tau) = 5\delta(t)$, then find
 - (i) Power spectral density of the output random process;
 - (ii) Average power of output random process.

Solution:

Given low pass filter,

By taking Laplace transform

Transfer function, $H(s) = \frac{1}{s+2}$; $H(j\omega) = \frac{1}{j\omega+2}$

Input Auto-correlation function

$$R_{x}(\tau) = 5\delta(t)$$

Power spectral density $S_{r}(\omega) = F[R_{r}(\tau)] = 5$

Output power spectral density

$$S_{v}(\omega) = |H(j\omega)|^{2} S_{x}(\omega)$$

$$S_{y}(\omega) = \frac{5}{\omega^2 + 4}$$

Output Auto-correlation function = $R_y(\tau) = \frac{5}{4}e^{-2|t|}$

$$\vdots \qquad \qquad e^{-|a|t} \overset{\text{CTFT}}{\longleftrightarrow} \frac{2a}{\omega^2 + a^2}$$

(ii) Average power of the output process = $R_v(0)$

$$P_y = \frac{5}{4} W$$

Q.12 It is desired to generate a random signal X(t) with auto correlation function, $R_x(\tau) = 5\eta e^{-5|\tau|}$, by passing a white noise n(t), with power spectral density $S_n(t) = \eta/2$ W/Hz, through an LTI system. Obtain an expression for the transfer function H(t) of the given LTI system.

Solution:

Given that,

$$R_{\nu}(\tau) = 5\eta e^{-5|\tau|}$$

So, the spectral density = Fourier transform of $R_{\nu}(\tau)$

$$\Rightarrow S_{X}(\omega) = \int_{-\infty}^{\infty} R_{x}(\tau)e^{-j\omega\tau}d\tau = \int_{-\infty}^{\infty} 5\eta e^{-5|\tau|}e^{-j\omega\tau}d\tau$$

$$= 5\eta \left[\int_{0}^{\infty} e^{-5\tau}e^{-j\omega\tau}d\tau + \int_{0}^{\infty} e^{-5\tau}e^{j\omega\tau}d\tau\right]$$

$$= 5\eta \left[\frac{e^{-(5+j\omega)\tau}}{-(5+j\omega)}\right]_{0}^{\infty} + 5\eta \left[\frac{e^{-(5-j\omega)\tau}}{-(5-j\omega)}\right]_{0}^{\infty} = 5\eta \left[\frac{1}{5+j\omega} + \frac{1}{5-j\omega}\right]$$

$$\therefore S_{X}(\omega) = \frac{5\eta \times 10}{25+\omega^{2}} = \frac{50\eta}{25+\omega^{2}} \qquad ...(i)$$
Hence,
$$S_{X}(\omega) = |H(\omega)|^{2} \cdot \frac{\eta}{2}$$

$$\therefore |H(\omega)|^{2} = S_{X}(\omega) \cdot \frac{2}{\eta} = \frac{100\eta}{25+4\pi^{2}f^{2}}$$

$$\Rightarrow |H(f)|^{2} = \frac{100}{25+4\pi^{2}f^{2}}$$

$$\Rightarrow H(f) = \frac{10}{5+j2\pi f}$$

Q.13 The power spectral density of a real stationary random process X(t) is given by

$$S_X(f) = \begin{cases} \frac{1}{W}, & |f| \le W \\ 0 & |f| > W \end{cases}$$

Find the value of the expectation $E\left[\pi X(t) \cdot X\left(t - \frac{1}{4W}\right)\right]$.

Solution:

$$S_{\chi}(f) = \begin{cases} \frac{1}{W}, & |f| \le W \\ 0 & |f| > W \end{cases}$$

٠.

$$: R_{\chi}(\tau) \xrightarrow{\text{CTFT}} [S_{\chi}(f)]$$

$$R_{\chi}(\tau) = 2\text{sinc}[2 W\tau]$$

Also,

$$E\left[\pi X(t) \cdot X\left(t - \frac{1}{4W}\right)\right] = \pi E\left[x(t) \cdot x\left(t - \frac{1}{4W}\right)\right]$$
$$= \pi R_X\left(\frac{1}{4W}\right) = \pi \cdot 2\operatorname{sinc}\left(\frac{1}{2}\right) \qquad \dots(i)$$

We know that,

$$\sin c(x) = \frac{\sin \pi x}{\pi x}$$

From equation (i), we get

$$\therefore \qquad E\left[\pi X(t) \cdot X\left(t - \frac{1}{4W}\right)\right] = 2\pi \frac{\sin\frac{\pi}{2}}{\frac{\pi}{2}} = 4$$

Stationary random process X(t) has the following auto correlation function

$$R_{\chi}(\tau) = \sigma^2 e^{-\mu|\tau|}$$

where μ and σ^2 are constants. It is passed through a filter whose impulse response is

$$h(\tau) = \alpha e^{-\alpha \tau} u(\tau)$$

here α is constant and $u(\tau)$ is step function.

- (a) Find power spectral density of random signal X(t).
- (b) Find the power spectral density of the output random signal Y(t).

Solution:

(a) Power spectral density (PSD) of input is expressed as

$$S_X(\omega) = \operatorname{CTFT} \{ R_X(\tau) \} = \int_{-\infty}^{\infty} R_X(\tau) e^{-j\omega\tau} d\tau$$
 or
$$S_X(\omega) = \int_{-\infty}^{\infty} \sigma^2 e^{-\mu|\tau|} e^{-j\omega\tau} d\tau = \sigma^2 \int_{-\infty}^{0} e^{(\mu - j\omega)\tau} d\tau + \sigma^2 \int_{0}^{\infty} e^{-(\mu + j\omega)\tau} d\tau$$

$$= \sigma^2 \left[\frac{1}{\mu - j\omega} + \frac{1}{\mu + j\omega} \right] = \frac{2\mu \sigma^2}{\mu^2 + \omega^2}$$

(b) Power spectral density of output is related to power spectral density of input as

$$S_{Y}(\omega) = |H(\omega)|^{2} S_{X}(\omega) \qquad(i)$$
 and
$$H(e^{i\omega}) = \text{CTFT}\{h(\tau)\}$$

$$= \int_{-\infty}^{\infty} h(\tau) \, e^{-j\omega\tau} \, d\tau = \int_{-\infty}^{\infty} \alpha \, e^{-\alpha\tau} \, u(\tau) \, e^{-j\omega\tau} \, d\tau$$