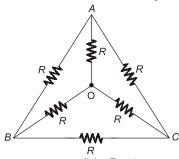


POSTAL BOOK PACKAGE 2024

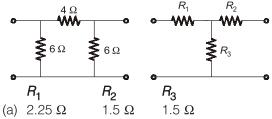
CONTENTS

ELECTRICAL ENGINEERING

Objective Practice Sets

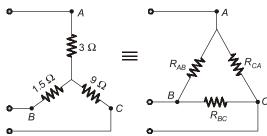

Electric Circuits

1.	Circuit Element and Energy Sources 2
2.	Network Laws, Mesh and Nodal Analysis12
3.	Network Theorems
4.	Circuit Transient and Laplace Transform Analysis 53
5.	Graph Theory
6.	Resonance
7.	Two Port Network
8.	Network Function and Network Synthesis116
9.	Miscellaneous127

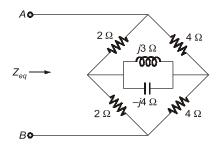

Circuit Element and Energy Sources

MCQ and NAT Questions

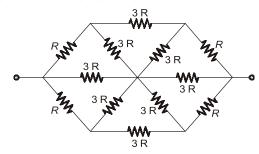
The effective resistance between the terminals A and B in the circuit shown in the figure is



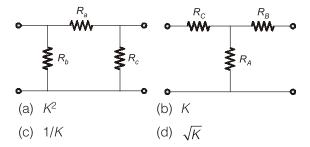
- (a) R
- (b) R 1
- (c)
- (d) $\frac{6}{11}R$
- Q.2 The equivalent star impedance of a balanced delta connected load of value $6 + j 9 \Omega$ is given by
 - (a) $9 + j6 \Omega$
- (b) $2 + j3 \Omega$
- (c) $18 + j27 \Omega$
- (d) $6 i9 \Omega$
- Q.3 A network contains only independent current sources and resistors. If the values of all resistors are doubled, the values of the node voltages
 - (a) will become half
 - (b) will remain unchanged
 - (c) will become double
 - (d) cannot be determined unless the circuit configuration and the values of the resistors are known
- **Q.4** The value of R_1 , R_2 and R_3 of the equivalent 'T' network for the given π network will be such that



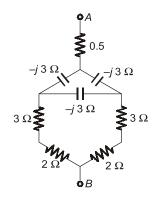
- (b) 1.5Ω
- 1.5
- 2.25Ω 2.25Ω
- (c) 2.25Ω
 - 1.5Ω
- (d) 1.5Ω
- 2.25Ω
- 1.5Ω


Q.5 For the equivalent @ figure circuit shown in the given figure, the values of ${\it R_{AB}}$ and ${\it R_{BC}}$ are respectively

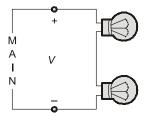
- (a) 5Ω and 15Ω
- (b) 15Ω and 30Ω
- (c) 30Ω and 5Ω
- (d) 20Ω and 35Ω
- Q.6 In the circuit of figure. The equivalent impedance seen across terminals A, B is $__$ Ω .



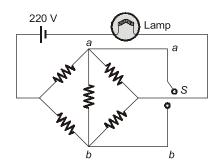
- Q.7 If each branch of a delta circuit has impedance $Z/\sqrt{3}$ then, each branch of the equivalent Ycircuit has impedance.
- (c) $3\sqrt{3}Z$
- (d) Z/3
- Q.8 The equivalent resistance between terminals A and B for the circuit shown is:



- (a) R
- (b) $\frac{R}{3}$
- (c) $\frac{3R}{2}$
- (d) 2 R
- **Q.9** Consider a delta connection of resistors and its equivalent star connection as shown below. If all elements of delta connection are scaled by a factor of K, K > 0, the elements of the corresponding star equivalent will be scaled by a factor of



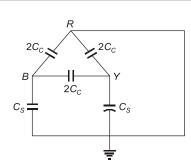
Q.10 For the circuit shown, the impedance between terminals *A* and *B* is:


- (a) 9 j3
- (b) 3 i1.5
- (c) j1.5
- (d) 0Ω
- Q.11 A lamp rated at 10 watts, 50 volts is proposed to be used in 110 volts, system. The wattage and resistance of the resistor to be connected in series with the lamp should be
 - (a) 15 watt, 350 ohms
 - (b) 10 watts, 250 ohms
 - (c) 12 watts, 300 ohms
 - (d) 15 watts, 250 ohms
- Q.12 The equivalent resistance of four resistors joined in parallel is 20 ohms. The currents flowing through them are 0.6, 0.3, 0.2 and 0.1 amp. The lowest value resistor is of
 - (a) 240 ohms
- (b) 120 ohms
- (c) 80 ohms
- (d) 40 ohms

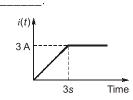
Q.13 The incandescent bulbs rated respectively as P_1 and P_2 for operation at a specified mains voltage are connected in series across the mains as shown in the below figure. Then the total power supplied by the mains to the two bulbs are

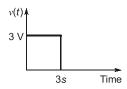
- (a) $\frac{P_1 P_2}{P_1 + P_2}$
- (b) $\sqrt{P_1^2 + P_2^2}$
- (c) $(P_1 + P_2)$
- (d) $\sqrt{P_1 \times P_2}$

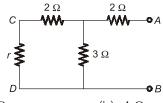
Q.14 All resistances in the circuit in figure are of *R* ohms each. The switch is initially open. What happens to the lamp's intensity when the switch is closed?



- (a) increases
- (b) decreases
- (c) remains the same
- (d) answer depends on the value of R
- Q.15 A practical current source is usually represented by
 - (a) a resistance in series with an ideal current source.
 - (b) a resistance in parallel with an ideal current source.
 - (c) a resistance in parallel with an ideal voltage source.
 - (d) none of these
- **Q.16** For the circuit shown in figure, the capacitance measured between terminals *B* and *Y* will be


Electrical Engineering


POSTAL BOOK PACKAGE 2024



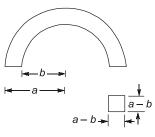
- (a) $\frac{(C_s + 3C_c)}{2}$
- (b) $C_s + \left(\frac{2c_c}{2}\right)$
- (c) $\left(\frac{C_s + 6C_c}{2}\right)$
- (d) $6C_c + 2C_s$
- Q.17 The voltage and current waveforms for an element are shown in figure. The value of circuit element is

- (a) 3 H
- (b) 2 F
- (c) 5 H
- (d) 3 F
- **Q.18** n resistors each of resistance R when connected in series offer an equivalent resistance of 50 Ω and when reconnected in parallel the effective resistance is 2 Ω . The value of R is
 - (a) 2.5Ω
- (b) 5Ω
- (c) 7.5Ω
- (d) 10Ω
- **Q.19** Three 30 Ω resistors are connected in parallel across an ideal 40 V source. What would be the equivalent resistance seen by the load connected across this circuit?
 - (a) 0Ω
- (b) 10Ω
- (c) 20Ω
- (d) 30Ω
- **Q.20** For the circuit shown below the value of r connected between C and D is such that the equivalent resistance of the circuit by looking into circuit through terminals A and B is r only. Then the value of r is

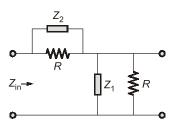
- (a) 2Ω
- (b) 4Ω
- (c) 3Ω
- (d) 6Ω

Q.21 For a series and a parallel circuit, the equivalent total value of certain parameter *X* is given by

 $X_e = X_1 + X_2 + X_3 + X_4 + \dots + X_n$


where X_i is the ith value of the parameter and X_e is the equivalent value, and n is the number of elements.

The parameter X can be

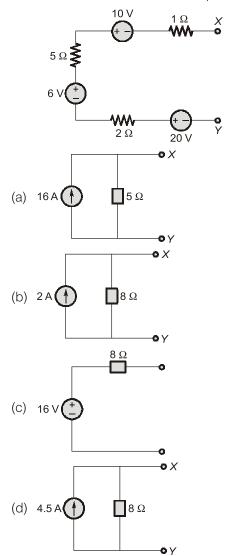

- (a) resistance
- (b) current
- (c) voltage
- (d) power
- Q.22 Assertion (A): Two wires of same length with different cross-sectional areas are connected in series. The heat produced by the current is more the thicker wire.

Reason (R): The thicker wire has low resistance.

- (a) Both A and R are true, and R is the correct explanation of A.
- (b) Both A and R are true, but R is not a correct explanation of A.
- (c) A is true, but R is false.
- (d) A is false, but R is true.
- **Q.23** The resistance measured between the two ends of the toroid shown in the below figure is *R*. What would be the resistance if both *a* and *b* are doubled?

- (a) 2R
- (b) R
- (c) R/2
- (d) R/4
- **Q.24** What are the suitable values for Z_1 and Z_2 to make the input impedance, $Z_{\rm in}$ of the below network equal to R?

- (a) Rand R
- (b) 2*R* and *R*
- (c) 3R and 2R
- (d) 4R and 4R

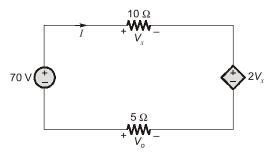

Q.25 Assertion (A): Inductors carrying steady direct currents act as effective short circuits with zero voltage across it.

> Reason (R): The voltage induced across an inductance is proportional to the rate of change of current di/dt.

- (a) Both A and R are true, and R is the correct explanation of A.
- (b) Both A and R are true, but R is not a correct explanation of A.
- (c) A is true, but R is false.
- (d) A is false, but R is true.

Multiple Select Questions (MSQ)

Q.26 The circuit shown below will be represented as


Q.27 A series circuit containing passive elements has the following current and applied voltage:

$$V = A \sin\left(\omega t + \frac{\pi}{4}\right) V$$

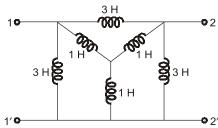
$$i = B \sin \left(\omega t - \frac{\pi}{6}\right) A$$

The circuit elements:

- (a) may be resistance and inductance.
- (b) may be inductance, capacitance and resistance.
- (c) may be resistance.
- (d) may be resistance and capacitance.
- Q.28 For the circuit shown below:

Which of the following are correct?

- (a) Current I = 2 A
- (b) Voltage $V_x = 20 \text{ V}$
- (c) Voltage $V_o = 10 \text{ V}$ (d) Voltage I = -2 A
- Q.29 An inductor of 5 H is placed across a voltage source represented by below given expression


$$V(t) = \begin{cases} 30t^2 & t > 0 \\ 0 & t < 0 \end{cases}$$

Which of the below given inferences are correct?

- (a) The voltage across inductor at time, t = 0.2 sec is 1.2 V
- (b) The current expression in inductor is $i = 2t^3$ A
- (c) The power in inductor is given by $P = 60t^5$ w.
- (d) The energy stored at time t = 5 sec is 156.25 kJ.
- Q.30 Which of the following is correct?
 - (a) A function that repeats itself after fixed intervals is said to be periodic.
 - (b) The voltage across an inductor leads the current through it by 90°.
 - (c) The impedance of a capacitor increases with increasing frequency.
 - (d) The impedance of a capacitor decreases with increasing frequency.

Q.31 Consider the inductor circuit shown below. Which of the given below statements are correct?

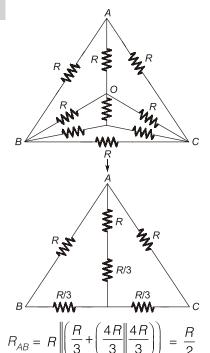
- (a) The value of equivalent inductance between 1 and 1' is 1H.
- (b) The value of equivalent inductance between 2 and 2' is 2H.
- (c) The value of equivalent inductances at port 11' and 22' are same.
- (d) Inductors are added in parallel in similar manner as resistors.

- **Q.32** The charge entering the positive terminal of an element is $q = 10 \sin 4\pi t$ mC, while the voltage across the element is $V = 2 \cos 4\pi t$ volts. Which of the following is correct?
 - (a) Current through the element is 40π cos $4\pi t$ mA.
 - (b) Power of the element $400\pi \cos^2 4\pi t$ mW.
 - (c) Power of the element $80\pi \cos^2 4\pi t$ mW.
 - (d) Power of the element at t = 0.3 sec, P = 250.24 mW.

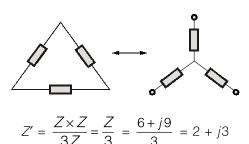
Answers Circuit Element and Energy Sources

- **1**. (c)
- **2**. (b)
- **3**. (c)
- **4**. (b)
- **5**. (a)
- **6.** (2.67)
- **7**. (b)
- **8**. (c)

- **9**. (b)
- **10**. (b)
- **11**. (c)
- **12**. (d)
- **13**. (a)
- **14**. (c)
- **15**. (b)
- **16.** (c)


- **17**. (a)
- **18**. (d)
- **19**. (a)
- **20**. (b)
- **21**. (d)
- **22**. (d)
- **23**. (c)
- **24**. (a)

- **25**. (a)
- **26**. (b,c)
- **27.** (a,b)
- **28.** (a,b)
- **29.** (a,b,c,d) **30.** (a,b,d) **31.** (a,c,d)
- _____
- **32.** (a,c,d)


Explanations

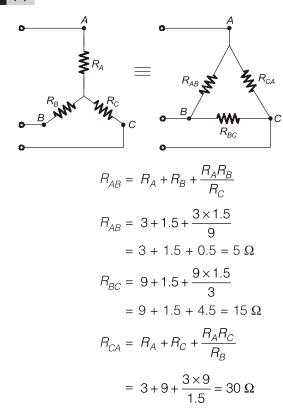
Circuit Element and Energy Sources

1. (c)

2. (b)

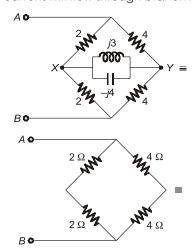
3. (c)

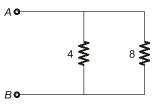
Since the network contains only independent current sources, so changing resistors in the same proportion the current through each branch will remain same but node voltages will change in the same proportion. Hence, doubling all resistors, node voltages will be doubled.


4. (b)

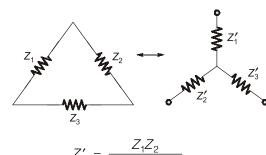
$$R_1 = \frac{4 \times 6}{4 + 6 + 6} = \frac{24}{16} = 1.5 \Omega$$

$$R_2 = \frac{6 \times 4}{16} = 1.5 \Omega$$


$$R_3 = \frac{6 \times 6}{16} = 2.25 \Omega$$


5. (a)

6. Sol.


The above circuit is a wheatstone bridge circuit, thus no current will flow through branch *XY*.

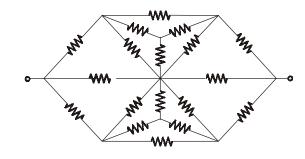
$$Z_{eq} = 8 \mid \mid 4 = \frac{8 \times 4}{12} = \frac{8}{3}$$

= 2.67 \Omega

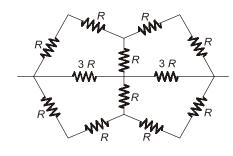
7. (b)

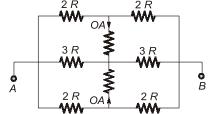
$$Z_1' = \frac{Z_1 Z_2}{Z_1 + Z_2 + Z_3}$$

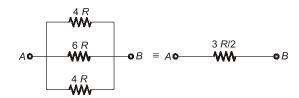
$$Z_2' = \frac{Z_1 Z_3}{Z_1 + Z_2 + Z_3}$$


$$Z_3' = \frac{Z_2 Z_3}{Z_1 + Z_2 + Z_3}$$

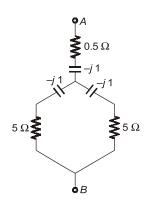
$$Z_1' = \frac{\frac{Z}{\sqrt{3}} \times \frac{Z}{\sqrt{3}}}{\frac{Z}{\sqrt{3}} + \frac{Z}{\sqrt{3}} + \frac{Z}{\sqrt{3}}}$$


$$=\frac{\frac{Z^2}{(\sqrt{3})^2}}{\frac{3Z}{\sqrt{3}}}=\frac{Z^2\sqrt{3}}{3Z\times3}$$


$$\Rightarrow \qquad Z'_1 = \frac{Z}{3\sqrt{3}}$$

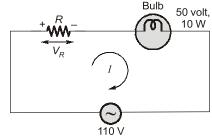

8. (c)

9. (b)


$$R_{A} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}} = K \cdot \left(\frac{R_{c}R_{b}}{R_{a} + R_{b} + R_{c}}\right)$$

$$R_{B} = \frac{R_{a}R_{c}}{R_{a} + R_{b} + R_{c}} = K \cdot \left(\frac{R_{a}R_{c}}{R_{a} + R_{b} + R_{c}}\right)$$

$$R_{C} = \frac{R_{a} \cdot R_{b}}{R_{a} + R_{b} + R_{c}}$$


$$= \frac{K^{2} \cdot R_{a}R_{b}}{K(R_{a} + R_{b} + R_{c})} = \frac{K \cdot R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$$

10. (b)

$$[(5-j) || (5-j)] + (0.5-j)$$
$$[2.5-j/2] + (0.5-j)$$
$$(3-j 1.5) \Omega$$

11. (c)

$$V_R = 110 - 50 = 60 \text{ volt}$$

Current in the circuit.

$$I = \frac{10}{50} = \frac{1}{5} A$$

Hence wattage of resistor

$$P_{R} = VI = 60 \times \frac{1}{5} = 12 \text{ W}$$
As
$$P_{R} = I^{2}R$$
∴
$$R = \frac{P_{R}}{I^{2}} = \frac{12}{(1/5)^{2}} = 300 \Omega$$

12. (d)

$$R_{eq} = 20 \Omega$$

 $I = 0.6 + 0.3 + 0.2 + 0.1$
 $= 1.2 \text{ A}$
 $V = IR = 1.2 \times 20 = 24 \text{ V}$

For maximum current, resistor *R* should be minimum.

$$R_1 = \frac{V_1}{I_1} = \frac{24}{0.6} = 40 \Omega$$

$$R_2 = \frac{V}{I_2} = \frac{24}{0.3} = 80 \Omega$$

$$R_3 = \frac{V}{I_3} = \frac{24}{0.2} = 120 \Omega$$

$$R_4 = \frac{V}{I_4} = \frac{24}{0.1} = 240 \Omega$$

Hence, 40 Ω is the lowest value resistor.

13. (a)

$$R_1 = \frac{V^2}{P_1}$$
 and $R_2 = \frac{V^2}{P_2}$

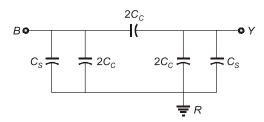
Bulbs are connected in series,

$$\begin{aligned} R_{\text{eq}} &= R_1 + R_2 \\ &= V^2 \left[\frac{1}{P_1} + \frac{1}{P_2} \right] = V^2 \left[\frac{P_1 + P_2}{P_1 P_2} \right] \end{aligned}$$

Total power =
$$\frac{V^2}{R_{eq}} = \frac{P_1 P_2}{P_1 + P_2}$$

POSTAL BOOK PACKAGE 2024

14. (c)


When we close the switch *S*, there will be no current in branch ab since it is a balanced Wheatstone bridge. So closing of switch will not effect lamp's intensity.

15. (b)

A practical current source is usually represented by a resistance in parallel with an ideal current source and a practical voltage source is usually represented by a resistance in series with an ideal voltage source.

16. (c)

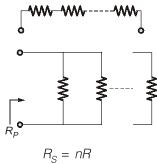
Given circuit can be redrawn is

$$C_{BY} = \frac{C_s + 2C_c}{2} + 2C_c = \frac{C_s + 6C_c}{2}$$

17. (3)

For the given waveforms

$$v(t) = \frac{3 di(t)}{dt}$$


comparing it with

$$v(t) = \frac{Ldi(t)}{dt}$$

We get,

$$L = 3 \, H$$

18. (d)

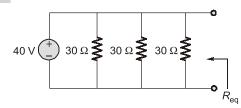
$$R_{P} = \frac{R}{n}$$

$$\Rightarrow \qquad n \cdot R = 50$$

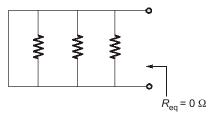
$$2 = \frac{R}{n}$$

$$R = \frac{50}{n}$$
 ...(1)

$$\Rightarrow$$
 $R = 2n$...(2)


Multiplying equation (1) and (2),

$$R^{2} = \frac{50}{n} \times 2n = 100$$


$$\Rightarrow R = \sqrt{100}$$

$$= 10 \Omega$$

19. (a)

Replacing voltage source by a short circuit,

20. (b)

$$r = \frac{(r+2)\times3}{r+2+3} + 2$$

On solving, $r = 4 \Omega$

21. (d)

As the circuit is a combination of series and parallel circuit and we know in series circuit current is same and in parallel voltage is same therefore *X* can not be current/voltage/resistance.

According to Tellegen's theorem the total instantaneous power given out by different sources always equals to the power consumed by various passive elements in various branches of the network at that time.

Therefore, option (d) is correct.

22. (d)

$$R = \rho \frac{l}{A}$$
 $A \rightarrow \text{area of cross-section}$ $R_1 = \rho \frac{l}{A_1}$ $R_2 = \rho \frac{l}{A_2}$

 $A_2 > A_1 \Longrightarrow R_2 < R_1$

Heat produced,

$$H_1 \propto I^2 R_1$$

$$H_2 \propto I^2 R_2$$

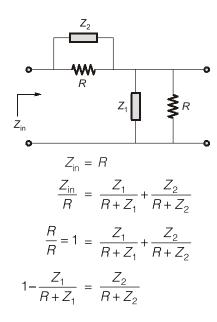
$$H_2 < H_1$$

- (A) False
- (R) True

23. (c)

Mean length of toroid=
$$\pi \left(b + \left(\frac{a-b}{2} \right) \right)$$

Where mean radius = $b + \left(\frac{a-b}{2}\right) = \frac{a+b}{2}$


Area of cross section = $\pi(a-b)^2$

$$R = \frac{\rho l}{A} = \frac{\pi \rho \left(\frac{a+b}{2}\right)}{\pi (a-b)^2} = \frac{\rho}{2} \frac{(a+b)}{(a-b)^2}$$

with 'a' and 'b' doubled,

$$R' = \frac{\rho}{2} \frac{(2a+2b)}{(2a-2b)^2}$$
$$= \frac{\rho}{4} \frac{a+b}{(a-b)^2} = \frac{R}{2}$$

24. (a)

$$\frac{R}{R+Z_1} = \frac{Z_2}{R+Z_2}$$

$$Z_2 = R$$

$$Z_1 = Z_2 = R$$

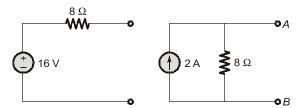
25. (a)

$$V_{L} \propto \frac{di}{dt}$$
; $V_{L} = L \frac{di}{dt}$

For d.c.

$$\frac{di}{dt} = 0 \implies v = 0$$

Inductor acts as short-circuit.


26. (b, c)

Equivalent voltage in the given circuit is

$$V = 6 + 20 - 10 = 16 \text{ V}$$

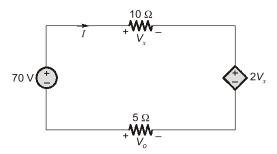
And equivalent resistance is

$$R = 1 + 5 + 2 = 8 \Omega$$

27. (a, b)

Phase difference between V and i is

$$\phi = \frac{\pi}{4} - \left(-\frac{\pi}{6}\right)$$
$$= 45^\circ + 30^\circ = 75^\circ$$


Since, i lags V therefore the circuit elements may be resistance and inductance.

$$Z = R + jX_I$$

or it may be resistance, inductance and capacitance.

$$Z = R + j(X_1 - X_C)$$

28. (a, b)

Applying KVL in the loop

$$70 - V_x - 2V_x + V_o = 0$$