

POSTAL BOOK PACKAGE 2024

CONTENTS

ELECTRONICS ENGINEERING

Objective Practice Sets

Analog Circuits

1.	Diode Circuit and Power Supply	2 - 16
2.	BJT Biasing and Thermal Stabilization	17 - 29
3.	FET and MOSFET Circuit	30 - 38
4.	Frequency Response and Multistage Amplifiers	39 - 54
5.	Feedback Amplifiers	55 - 61
6.	Oscillators	62 - 68
7.	Operational Amplifiers	69 - 85
8.	Power Amplifiers	86 - 91
9.	Multivibrators and Timers	92 - 99
10.	Miscellaneous	100 - 104

Diode Circuit and Power Supply

MCQ and NAT Questions

- The voltage across diode at temperature T_1 is 0.76 V. If temperature is increased by 20°C at constant current the new voltage across diode is
 - (a) 0.65 V
- (b) 0.81 V
- (c) 0.71 V
- (d) 0.7 V
- Q.2 A diode whose terminal characteristics are related as $i_D = I_S e^{V/V_T}$, where I_S is the reverse saturation current and V_T is thermal voltage (V_T = 25 mV), is biased at I_D = 4 mA. Its dynamic resistance is
 - (a) 12.5Ω
- (b) 50Ω
- (c) 6.25Ω
- (d) 25Ω
- Q.3 In the circuit shown below the input V, has positive and negative swings. V_{o} is the output.

- (a) $V_0 = 0$ for negative V_i
- (b) $V_o = V_B$ for positive V_i
- (c) $V_o = V_R \text{ for } V_i > V_R$
- (d) $V_o = V_B$ for all V_i

The output waveform is

Q.5 In the circuit shown below, the switch was connected to position 1 at t < 0 and at t = 0, it is changed to position 2. Assume that the diode has zero voltage drop and a storage time t_s . For $0 < t \le t_s$, V_R is given by (all in Volts)

- (a) $V_R = -5$
- (c) $0 \le V_R < 5$
- (b) $V_R = 0$ (d) $-5 < V_R < 0$
- Q.6 For the circuit shown below assuming ideal diode, the output waveform V_0 is

Q.7 The transfer characteristic of the network shown below is represented as

Q.8 For an input of $V_s = 5 \sin \omega t$, (assuming ideal diode), circuit shown below will behave as a

- (a) clipper, sine wave clipped at −2 V
- (b) clamper, sine wave clamped at -2 V
- (c) clamper, sine wave clamped at zero volt
- (d) clipper, sine wave clipped at 2 V

Q.9 The cut-in voltage of both Zener diode D_z and D shown in figure is 0.65 V, while breakdown voltage of the Zener is 3 V. Diode is considered to be ideal. The value of peak output voltage V_o .

- (a) 3 V in the positive half cycle and 0.65 V in the negative half cycle.
- (b) 3.65 V in the positive half cycle and -5 V in the negative half cycle.
- (c) 3 V in positive half cycle and -5 V in the negative half cycle
- (d) -3.65 V in positive half cycle and 5 V in the negative half cycle

Q.10 The voltage transfer characteristic as shown in the figure will relate to a

- 1. voltage regulator
- 2. half-wave rectifier
- 3. full-wave rectifier

Which of the above is/are correct?

- (a) 1 only
- (b) 2 only
- (c) 1 and 2
- (d) 1 and 3
- **Q.11** What is the output voltage V_0 for the circuit shown below assuming an ideal diode?

- (a) $-\frac{18}{5}$ V
- (b) $\frac{18}{5}$ V
- (c) $-\frac{13}{5}$ V
- (d) $\frac{13}{5}$ V
- **Q.12** What is the value of current *I* through the ideal diode in the circuit?

- (a) 100 mA
- (b) 150 mA
- (c) 200 mA
- (d) 250 mA
- **Q.13** The correct waveform for output (V_0) for below network is

Q.14 Consider the below circuit, for $V_i = V_m \sin \omega t$, the output voltage V_o for $R_l \to \infty$ will be

- (c) 2 V_m
- (d) $-V_m$
- Q.15 Consider the circuit shown in the figure below

If diode D_1 and D_2 are made up of same material with the cut-in voltage $V_{\gamma}=0.7$ V, then the value of current I is equal to

- (a) 0.46 mA
- (b) 0.99 mA
- (c) 0.59 mA
- (d) 1.06 mA

Q.16 Consider the diode circuit shown in the figure below:

The diode in the circuit is a large high-current silicon device whose reverse leakage current is reasonably independent of voltage appearing on the diode. If $V_0 = 1 \text{ V}$ at 20° C, then the value of output voltage at 40°C is equal to ___

Q.17 Consider the circuit shown in the figure below

If the cut-in voltage of the diode D_1 is equal to 0.7 V, then the value of current flowing through the diode is equal to _____ mA.

Q.18 A 40 V dc supply is connected across the network comprising of Zener and Silicon diodes as shown. The regulated voltages V_{01} , V_{02} and source current I_s are

- (a) 2.4 V, 5.1 V and 21.7 mA
- (b) 3 V, 6 V and 22.7 mA
- (c) 3.3 V, 9.3 V and 20.5 mA
- (d) 4 V, 10 V and 20 mA
- Q.19 A 700 mW maximum power dissipation diode at 25°C has 5 mW/°C de-rating factor. If the forward voltage drop remains constant at 0.7 V, the maximum forward current at 65°C is
 - (a) 700 mA
- (b) 714 mA
- (c) 1 A
- (d) 1 mA

Q.20 In the given circuit, D_1 is an ideal germanium diode and D_2 is a silicon diode having its cut-in voltage as 0.7 V, forward resistance as 20 Ω and reverse saturation current (I_s) as 10 nA. What are the values of I and V for this circuit, respectively?

- (a) 60 mA and 0 V
- (b) 50 mA and 0 V
- (c) 53 mA and 0.7 V
- (d) 44 mA and 1.58 V
- Q.21 Consider the following statements:

A clamper circuit

- 1. adds/subtracts a dc voltage to/from a waveform.
- 2. does not change the shape of the waveform.
- 3. amplifies the waveform.

Of these statements

- (a) 1 & 2 are correct
- (b) 1 & 3 are correct
- (c) 2 & 3 are correct (d) 1, 2 & 3 are correct
- Q.22 In order to rectify sinusoidal signals of millivolt range (< 0.6 V)
 - (a) bridge rectifier using diodes can be employed
 - (b) full-wave diode rectifier can be used
 - (c) a diode is to be inserted in the feedback loop of an OP-AMP
 - (d) a diode is to be inserted in the input of an OP-AMP
- Q.23 A Zener diode in the circuit shown below has a knee current of 5 mA, and a maximum allowed power dissipation of 300 mW. What are the minimum and maximum load currents that can be drawn safely from the circuit, keeping the output voltage V_{α} constant at 6 V?

- (a) 0 mA, 180 mA
- (b) 5 mA, 110 mA
- (c) 10 mA, 55 mA
- (d) 60 mA, 180 mA

Q.24 In the circuit shown below the zener voltage $V_{Z1} = V_{Z2} = 5$ volts, $V_{\gamma} = 0.6$, V_{o} is the output

- (a) For $|V_i| \le 5.6$ volts, $V_0 = V_i$
- (b) For $|V_i| \le 10$ volts, $V_0 = V_i$
- (c) For $|V_i| \ge 5.6$ volts, $V_0 = V_i$
- (d) $V_i \le 5.6$ volts for all V_i
- Q.25 Following are the three statements regarding Zener diode regulator. Which of them is incorrect?
 - (i) It is a simple circuit, light weight, more reliable and provides regulation over a wide range of current
 - (ii) As there is power dissipation in series resistor and the diode, it results in poor efficiency
 - (iii) The stabilized output is independent of Zener breakdown voltage and can be varied
 - (a) only 1
- (b) only 2
- (c) only 3
- (d) all are incorrect
- Q.26 A dc power supply has a no-load voltage of 30 V, and a full-load voltage of 25 V at a full-load current of 1 A. Its output resistance and load regulation, respectively, are
 - (a) 5Ω and 20%
- (b) 25Ω and 20%
- (c) 5Ω and 16.7%
- (d) 25Ω and 16.7%
- Q.27 If the input ac is 10 V rms, the maximum voltage that will appear across the diode of a half-wave rectifier with a capacitor input filter will be
 - (a) 10 V
- (b) 14 V
- (c) 20 V
- (d) 28 V
- Q.28 A single-phase diode-bridge rectifier is connected to a load-resistor of 50 Ω . The source voltage is $V = 200 \sin \omega t$ where $\omega = 2\pi \times 50$ radians/second. The power dissipated in the load resistor is
- (b) $\frac{3200}{\pi^2}$ W
- (c) 400 W

- Q.29 The ripple factor of a power supply is given by (symbols have the usual meaning)
- (b) $\sqrt{\left(\frac{I_{\text{rms}}}{I_{dC}}\right)^2 1}$
- (c) $\sqrt{\left(\frac{I_{dc}}{I_{rms}}\right)^2 1}$ (d) $\frac{I_{dc}}{I_{rms}}$
- Q.30 A voltage of 200 cos100t is applied to a HWR with a load resistance of 5 k Ω . The rectifier is represented by an ideal diode in series with a resistance of 1 k Ω . The maximum value of current, d.c component of current and rms value of current will be respectively
 - (a) 33.33 mA, 14.61 mA, 16.67 mA
 - (b) 33.33 mA, 10.61 mA, 16.67 mA
 - (c) 28.33 mA, 14.61 mA, 13.33 mA
 - (d) 40 mA, 20 mA, 25 mA
- Q.31 An ideal low-pass filter has a cut-off frequency of 100 Hz. If the input to the filter in volts is
 - $v(t) = 30\sqrt{2} \sin 1256t$, the magnitude of the output of the filter will be
 - (a) 0 V
- (b) 20 V
- (c) 100 V
- (d) 200 V
- Q.32 The ratio of available power from the DC component of a full-wave rectified sinusoid to the available power of the rectified sinusoid is
 - (a) $8/\pi$
- (b) 2
- (c) $4/\pi$
- (d) $8/\pi^2$
- Q.33 For a full-wave rectifier with shunt capacitor filter, the peak to peak ripple voltage is

(where f = fundamental power line frequency, $I_{DC} = DC$ current)

- Q.34 Consider the following rectifier circuits:
 - 1. Half-wave rectifier without filter.
 - 2. Full-wave rectifier without filter.
 - 3. Full-wave rectifier with series inductance filter.
 - 4. Full-wave rectifier with capacitance filter.

The sequence of these rectifier circuits in decreasing order of their ripple factor is

- (a) 1, 2, 3, 4
- (b) 3, 4, 1, 2
- (c) 1, 4, 3, 2
- (d) 3, 2, 1, 4

- (a) $R_{l \min} = 250 \ \Omega$
- (b) $I_{L \min} = 8 \text{ mA}$
- (c) $R_{L \text{ max}} = 1.25 \text{ k}\Omega$
- (d) $I_{R} = 40 \text{ mA}$

Q.50 For the circuit shown below:

Assume the circuit parameters are $R_1 = 5 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $V_y = 0.7 \text{ V}$, $V^+ = +5 \text{ V}$ and $V^- = -5 \text{ V}$

- (a) For $V_1 = 0$, $i_{R1} = 0.62$ mA
- (b) For $V_1 = 4 \text{ V}$, $i_{R1} = 0.2 \text{ mA}$
- (c) For $V_1 = 4 \text{ V}$, $i_{R2} = 0.83 \text{ mA}$
- (d) For $V_1 = 4$ V, $i_{D1} = 0.63$ mA

Q.51 For the circuit shown below:

Which of the following are correct?

- (a) $V_A = 7.62 \text{ V}$
- (b) $V_B = 6.92 \text{ V}$
- (c) $V_A = 5 \text{ V}$
- (d) $V_B = 9.53 \text{ V}$
- Q.52 Assuming ideal diode characteristics, the input/ output voltage relationship for the circuit shown in figure is

- (a) When $V_i(t) \le V_R$; $V_0 = V_R$
- (b) When $V_{i}(t) \le V_{R}$; $V_{0} = V_{i}(t)$
- (c) When $V_i(t) > V_R$; $V_0 = V_R$
- (d) When $V_i(t) > V_R$; $V_0 = V_i(t)$

Answers	Diode	Circuit	and	Power	Supply

(b)

1.	(c)
1.	(c)

2.

(c)

3. (c) 4. (d) 5. (a) 6.

(d)

7. (c)

8. (b) 9.

10. (a) **11**. (a)

12. (c) 13. (a) 14. (c)

15. (d) 16. (4) 17. (0)

18. (d)

19. (b) 20. (a) 21. (a)

22. (c)

23. (c) 24. (a) **25**. (c)

26. (b)

27. (d)

28. (c)

31. (a)

29. (b) 30. (b) **32**. (d)

33. (c) **34**. (a)

35. (c)

36. (c) 37.

38. (c)

(d)

39. (d)

40. (b) **41**. (c)

42. (b)

43. (d)

44. (b)

45. (d)

46. (c)

47. (c)

48. (c, d)

49. (a, b, c, d)

50. (a, b, c, d) **51.** (c, d)

52. (a, d)

Explanations

Diode Circuit and Power Supply

1. (c)

$$\frac{dV_D}{dT} = -2.5 \text{ mV/°C}$$

$$\Delta V_D = 20 \times (-2.5 \text{ mV}) = -0.05 \text{ V}$$

$$V_D + \Delta V_D = V_2 = 0.71 \text{ V}$$

2. (c)

$$\frac{1}{r_{cl}} = \frac{\partial I_D}{\partial V} = \frac{I_D}{V_T}$$

 r_d : dynamic resistance.

$$\therefore \qquad r_d = \frac{V_T}{I_D} = \frac{25}{4} = 6.25 \,\Omega$$

3. (c)

Considering ideal diode:

for $V_i < V_B$, diode is OFF hence there is no current through R and $V_0 = V_i$.

For $V_i > V_R$, diode is ON hence

$$V_0 = V_R$$

(as diode will act as short circuit)

4. (d)

For $0 \le t \le 1$, diode is ON

$$I = \frac{V_i - 0.6}{100 + 600} = \frac{10 - 0.6}{700}$$

= 0.01343 A

$$V_0 = 600 \times 0.01343 = 8.058 \text{ V}$$

for 1 < t < 2, diode is OFF, there will be no current in the circuit and hence

$$V_{\circ} = 0 \text{ V}$$

Hence output waveform can be given as shown below:

5. (a)

For $0 < t < t_s$ diode will remain ON and hence $V_R + 5 = 0$ $V_R = -5 \text{ V}$ *:*.

$$V_R = -5 \, \mathrm{V}$$

6. (d)

For $0 \le V_i < V_R = \text{diode is OFF} \Rightarrow V_0 = V_i$ For $V_R \le V_i \Rightarrow$ diode is ON $\Rightarrow V_0 = 5 \text{ V}$ Hence output waveform can be as shown below

7. (c)

For $V_i < V_R = \text{Diode is OFF} \Rightarrow V_0 = V_i$ For $V_i > V_B = \text{Diode is ON} \Rightarrow V_0 \simeq V_B$ Hence for a sinusoidal input, output can be shown as below

Hence characteristic can be as shown below

8. (b)

Hence given circuit acts as a clamper, sine wave clamped at – 2 V.

9. (b)

For positive half cycle:

In negative half cycle:

So,
$$V_0 = -5 \text{ V}$$

11. (a)

: Diode is forward bias (short circuit)

By applying KVL,

$$3 V + 3 k\Omega I - 5 V + 2 k\Omega I + 1 V = 0$$

$$I = \frac{1V}{5k\Omega} = \frac{1}{5} \text{ mA}$$

$$V_o = -3 - 3 \times \frac{1}{5} = -\frac{18}{5} \text{ V}$$

12. (c)

: Diode is in forward bias (short circuit)

$$I = \frac{10}{50} = 0.2 \text{ A} = 200 \text{ mA}$$

13. (a)

For positive half cycle of input voltage

$$D_1 \rightarrow \text{OFF}$$

 $D_2 \rightarrow \text{ON}$

For negative half cycle of input voltage

Still the polarity of output voltage is in the same direction. So, net output of the circuit will be a full rectified wave.

14. (c)

The given circuit is a voltage doubler. Hence, $V_0 = 2 V_m$

When D_2 is ON then the value of V_0 will be $V_0 = 3 - 0.7 \; \mathrm{V} = 2.3 \; \mathrm{V}$

$$V_0 = 3 - 0.7 \text{ V} = 2.3 \text{ V}$$

Hence, D_1 will be OFF.

Thus, The current,

$$I = \frac{2.3 - (-3)}{5} \times 10^{-3}$$
$$= \frac{5.3}{5} \times 10^{-3} = 1.06 \text{ mA}$$

16. (4)

Calculating the value of reverse saturation current (I_{01}) flowing through the diode at 20°C We get,

$$I_{01} = \frac{V_0}{1M\Omega} = 1\mu A$$

(for
$$V_0 = 1 \text{ V}$$
)

The reverse saturation current doubles for every 10° rise in temperature. Hence, the rise in temperature.

$$\Delta T = (40^{\circ} - 20^{\circ})C = 20^{\circ}C$$

Thus,

$$I_{02} = I_{01} 2^{(\Delta T/10)}$$

(where I_{02} is reverse saturation current at 40°C)

=
$$(1 \mu A) \times 2^{(20/10)}$$

= $4 \mu A$

Hence,

$$V_0 = I_{02} \times 1 \times 10^6$$

= 4 V

17. (0)

Drawing the Thevenin equivalent circuit, we get

Applying KVL we get $V_D = 0$ V, thus no current will flow through the diode D_1 .

Hence.

$$I = 0 A$$

18. (d)

Cut in voltage of Si diode

So
$$V_{01} = 0.7 \text{ V}$$

$$V_{02} = 6 \text{ V} + 4 \text{ V} = 10 \text{ V}$$
∴
$$I_s = \frac{40 \text{ V} - 10 \text{ V}}{1.5 \text{ kO}} = 20 \text{ mA}$$

19. (b)

Power denating factor $\frac{dW}{dT} = -5 \text{ mW/°C}$

So power available at 65°C

=
$$700 \text{ mW} - 5 \times (65 - 25) \text{ mW}$$

= $(700 - 200) \text{ mW} = 500 \text{ mW}$

Now,

$$P = VI$$

∴ 500 mW =
$$0.7 \times I$$

$$\therefore I = \frac{500}{0.7} \,\text{mA} \simeq 714 \,\text{mA}$$

20. (a)

In the given circuit, only the ideal germanium diode (D_1) will be in ON state and D_2 will be in OFF state. So, the equivalent circuit can be drawn as given below:

From the above equivalent circuit,

$$V = 0 V$$

and

$$I = \frac{6}{100} A = 60 \text{ mA}$$

21. (a)

- 1. A clamper clamps a signal to a different dc level.
- 2. The total swing of the output signal is equal to the total swing of input signal.