

## **ELECTRICAL ENGINEERING**

CONVENTIONAL Practice Sets

### CONTENTS

#### **ELECTRIC CIRCUITS**

| 1. | Basics, Circuit Elements, Nodal & Mesh Analysis                                                    |
|----|----------------------------------------------------------------------------------------------------|
| 2. | Circuit Theorems                                                                                   |
| 3. | Capacitors and Inductors                                                                           |
| 4. | Transient Response of DC and AC Networks (First Order RL & RC Circuits, Second Order RLC Circuits) |
| 5. | Sinusoidal Steady State Analysis, AC Power Analysis 108                                            |
| 6. | Magnetically Coupled Circuits125                                                                   |
| 7. | Frequency Response and Resonance                                                                   |
| 8. | Two Port Networks                                                                                  |
| 9. | Network Topology, Miscellaneous                                                                    |

# CHAPTER

## Basics, Circuit Elements, Nodal & Mesh Analysis

Q1 A 10 V battery with an internal resistance of 1  $\Omega$  is connected across a non-linear load whose *V-I* characteristics is given by  $7I = V^2 + 2$  V. Find the current delivered by the battery.

...(ii)

#### **Solution:**

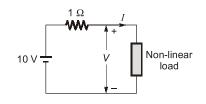
Using KVL,

$$V + I = 10$$
 ...(i)

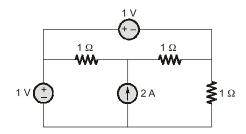
Given,  $7I = V^2 + 2 V$ 

On solving equation (i) and equation (ii) we get, V = 5 Volts

$$I = 5 \Delta$$



Q2 Find the power delivered by the current source in the figure shown below.



#### **Solution:**

Consider node voltages  $V_a$ ,  $V_b$ ,  $V_x$  as shown below.

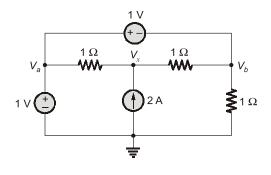
Applying nodal analysis,

$$\frac{V_x - V_a}{1} + \frac{V_x - V_b}{1} = 2$$

$$\Rightarrow \qquad 2V_x - (V_a + V_b) = 2$$

$$\Rightarrow \qquad V_x = \frac{2 + (V_a + V_b)}{2} \qquad ...(i)$$
Also,
$$V_a - V_b = 1 \ V$$

$$V_a = 1 \ V$$
Thus,
$$V_b = 0 \ V$$



$$V_x = \frac{2 + (1 + 0)}{2} = 1.5 \text{ V}$$

:.Power delivered by current source = 
$$V_x \cdot I$$

$$[I = 2 \text{ A (given)}]$$

$$= (1.5) \times 2 = 3 \text{ Watts}$$

Two identical coils connected in parallel across 100 V dc supply, take 10 A current from the supply. Power dissipated in one coil is 600 W. What is the resistance of each coil?

#### **Solution:**

Given, Power dissipated in one coil = 600 W

$$I = I_1 + I_2$$



$$I_1 = I_2$$

$$I_1 = I_2 = \frac{10 \text{ A}}{1} = 5$$

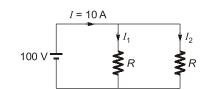
 $I_1 = I_2 = \frac{10 \text{ A}}{2} = 5 \text{ A}$ 



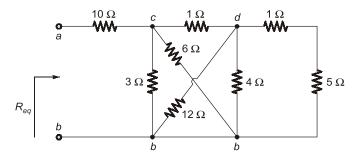
Hence, resistance of coil,

Power dissipated,

$$R = \frac{P}{I_1^2} = \frac{600}{(5)^2} = 24 \Omega$$



#### Q4 Calculate equivalent resistance $R_{eq}$ in the circuit shown.



#### **Solution:**

 $3 \Omega$  and  $6 \Omega$  resistors in parallel because they are connected to same two nodes c and b. Their combined resistance is

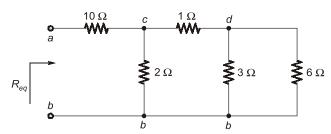
$$=\frac{3\times6}{3+6}=2\,\Omega$$

Similarly,  $12 \Omega$  and  $4 \Omega$  resistors are in parallel since they are connected to same two nodes d and b.

Hence, 
$$12 \Omega | |4 \Omega| = \frac{12 \times 4}{12 + 4} = 3 \Omega$$

Also,  $1 \Omega$  and  $5 \Omega$  resistors are in series, hence combined resistance,

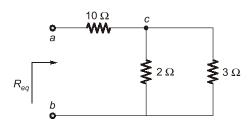
$$1 \Omega + 5 \Omega = 6 \Omega$$



Further 3  $\Omega$  and 6  $\Omega$  in parallel gives equivalent resistance =  $\frac{3 \Omega \times 6 \Omega}{(3+6) \Omega} = 2 \Omega$ 

This 2  $\Omega$  in series with 1  $\Omega$ .

Given equivalent as  $(2 + 1) \Omega = 3 \Omega$  as shown below.



Now 2  $\Omega$  and 3  $\Omega$  parallel's combination in series with 10  $\Omega$  resistance.

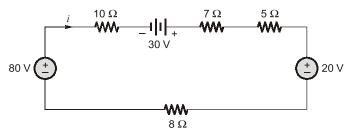




Hence,

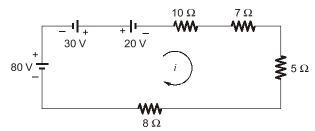
$$R_{ab} = R_{eq} = 10 \Omega + (2 \Omega || 3 \Omega)$$
  
=  $10 + \frac{2 \times 3}{2 + 3} = 11.2 \Omega$ 

Q5 Use resistance and source combinations to determine the current in figure shown and power delivered by 80 V source.



#### **Solution:**

The circuit can be redrawn as,



Further combining the three voltage sources into an equivalent source of 90 V as shown below.

All the resistance, combined in series as,

$$R_{eq} = (10+7+5+8)\,\Omega = 30\,\Omega \label{eq:Req}$$
   
  $-90+30i=0$ 

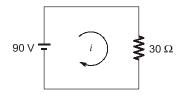
Simply applying kVL,

$$-90 + 30i = 0$$

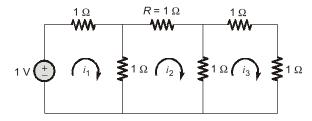
Hence,

$$i = 3 A$$

Power delivered by 80 V source = 80 V × 3 A = 240 W



Q6 Find the power dissipated in the resistor R in the ladder network shown in the figure below.



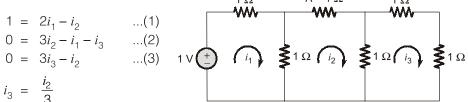
#### **Solution:**

Using KVL in loop,

$$1 = 2i_1 - i_2$$
 ...(1)

$$0 = 3i_2 - i_1 - i_3 \qquad ...(2)$$

$$0 = 3i_3 - i_2$$



*:*.

By solving the equations, we get,

$$i_2 = \frac{3}{13} A$$

 $\therefore$  Power dissipated in the resistor  $R = i^2 R = \frac{9}{169} W$ 



Q7 The following mesh equations pertain to a network:

$$8I_1 - 5I_2 - I_3 = 110$$
  
-5 $I_1 + 10I_2 + 0 = 0$   
- $I_1 + 0 + 7I_3 = 115$ 

Draw network showing each element.

#### **Solution:**

All the mesh equations can be rearrangement as,

$$8I_{1} - 5I_{2} - I_{3} = 110$$

$$\Rightarrow 5(I_{1} - I_{2}) + (I_{1} - I_{3}) + 2I_{1} = 110$$

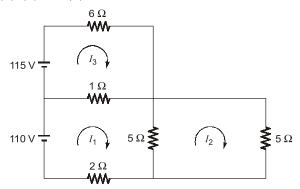
$$-5I_{1} + 10I_{2} + 0 = 0$$
...(1)

$$5(I_2 - I_1) + 5I_2 = 0 \qquad ...(2)$$

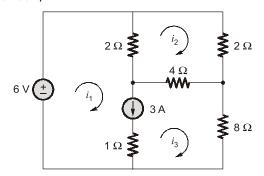
$$-I_1 + 0 + 7I_3 = 115$$

$$\Rightarrow \qquad (I_3 - I_1) + 6I_3 = 115 \qquad ...(3)$$

On the basis of equation (1), (2) and (3), we can draw the network as,



#### Q8 Find mesh currents in the circuit,



#### **Solution:**

$$i_1 - i_3 = 3 A$$
 ...(1)

BY KVL for super mesh,

$$2(i_1 - i_2) + 4(i_3 - i_2) + 8i_3 = 6$$
  
 $2i_1 - 6i_2 + 12i_3 = 6$  ...(2)

By KVL for second mesh,

$$2i_2 + 4(i_2 - i_3) + 2(i_2 - i_1) = 0$$
  

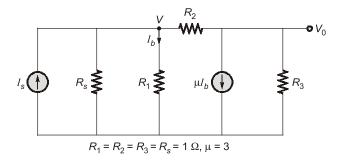
$$8i_2 - 4i_3 - 2i_1 = 0$$
 ...(3)

Solving equations (1), (2) and (3), we get

$$i_1 = 3.473 \,\text{A}$$
  
 $i_2 = 1.105 \,\text{A}$   
 $i_3 = 0.473 \,\text{A}$ 



Q9 For the circuit shown in the figure determine  $V_0/I_S$  using nodal analysis.



#### **Solution:**

Node (1), 
$$V = I_b \qquad ...(1)$$

$$V = I_b \qquad ...(2)$$

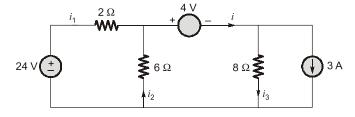
$$V = I_b \qquad ...(3)$$

$$V = I_b \qquad ...(4)$$

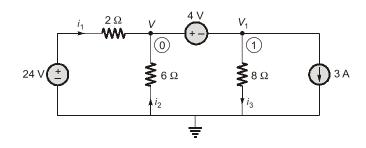
$$V = I_b \qquad ...(4)$$

$$V = I_b \qquad ...(4)$$

Q.10 For the circuit shown in figure, determine the currents  $i_1$ ,  $i_2$  and  $i_3$  using nodal analysis.



#### **Solution:**





By nodal analysis,

$$-i_{1} - i_{2} + i = 0$$

$$-\left(\frac{24 - V}{2}\right) + \left[-\frac{0 - V}{6}\right] + i = 0$$

$$\frac{V - 24}{2} + \frac{V}{6} + i = 0$$

$$V_{1} = V - 4$$
...(1)

KCL at node 1,

$$-i + \frac{V_1}{8} + 3 = 0$$

$$i = \left(\frac{V - 4}{8} + 3\right) \qquad \dots (2)$$

Combining (1) and (2),

Solving,

$$\frac{V-24}{2} + \frac{V}{6} + \frac{V-4}{8} + 3 = 0$$

$$V = 12 V$$

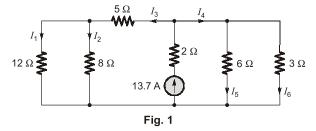
$$V_1 = 8 V$$

$$i_1 = \frac{24-12}{2} = 6 A$$

$$i_2 = -\frac{12}{6} = -2 A$$

$$i_3 = 1 A$$

Q.11 Find all branch currents in the network shown in figure below.



#### **Solution:**

On simplifying the above circuit,

$$R_3 = 5 + \frac{(12)(8)}{20} = 9.8 \Omega$$

$$R_4 = \frac{(6)(3)}{9} = 2 \Omega$$

$$R_3 = 9.8 \Omega$$

$$R_4 = 2.0 \Omega$$

$$R_3 = 9.8 \Omega$$

By current division rule,

$$I_3 = \frac{2}{9.8 + 2} \times 13.7 = 2.32 \text{ A}$$
  
 $I_4 = 13.7 - 2.32 = 11.38 \text{ A}$ 

Referring original network (Fig. 1),

$$I_1 = \frac{8}{(12+8)} (2.32) = 0.93 \text{ A}$$
 $I_2 = 2.32 - 0.93 = 1.39 \text{ A}$ 
 $I_5 = \frac{3}{(6+3)} (11.38) = 3.79 \text{ A}$ 
 $I_6 = 11.38 - 3.79 = 7.59 \text{ A}$