

ELECTRICAL ENGINEERING

CONVENTIONAL Practice Sets

CONTENTS

CONTROL SYSTEMS

1.	Introduction
2.	Transfer Function
3.	Block Diagram
4.	Signal Flow Graph
5.	Feedback Characteristics
6.	Modelling of Control Systems
7.	Time Domain Analysis of Control Systems
8.	Stability Analysis of Linear Control Systems
9.	The Root Locus Technique
10.	Frequency Domain Analysis of Control Systems
11.	Industrial Controllers & Compensators
12.	State Variable Analysis

Introduction

Q1 (a) A control system is defined by following mathematical relationship

$$\frac{d^2x}{dt^2} + \frac{6dx}{dt} + 5x = 12(1 - e^{-2t})$$

Find the response of the system at $t \to \infty$

(b) A function y(t) satisfies the following differential equation

$$\frac{dy(t)}{dt} + y(t) = \delta(t)$$

Where $\delta(t)$ is delta function. Assuming zero initial condition and denoting unit step function by u(t). Find y(t).

Solution:

(a) Taking LT on both sides

$$(s^{2} + 6s + 5) X(s) = 12 \left[\frac{1}{s} - \frac{1}{s+2} \right]$$

$$(s+1) (s+5) X(s) = \frac{24}{s(s+2)}$$

$$X(s) = \frac{24}{s(s+1)(s+2)(s+5)}$$

Response at $t \rightarrow \infty$

Using final value theorem,

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} [sX(s)] = \lim_{s \to 0} \frac{s \times 24}{s(s+1)(s+2)(s+5)} = 2.4$$

(b) Taking Laplace transform on both sides

$$Y(s)[s+1] = 1$$

 $Y(s) = \frac{1}{s+1}$

By taking inverse Laplace transform

$$y(t) = e^{-t} u(t)$$

Q2 The response h(t) of a linear time invariant system to an impulse $\delta(t)$, under initially relaxed condition is $h(t) = e^{-t} + e^{-2t}$. Find the response of this system for a unit step input u(t)?

Solution:

Transfer function is given by

$$H(s) = L\{e^{-t} + e^{-2t}\} = \frac{1}{s+1} + \frac{1}{s+2}$$

$$H(s) = C(s) - 1 + 1$$

$$H(s) = \frac{C(s)}{R(s)} = \frac{1}{s+1} + \frac{1}{s+2}$$

$$R(s) = \frac{1}{s} \text{ (step input)}$$

$$C(s) = R(s) \cdot H(s) = \frac{1}{s} \left[\frac{1}{s+1} + \frac{1}{s+2} \right] = \frac{1}{s(s+1)} + \frac{1}{(s+2)(s)}$$

$$= \frac{1}{s} - \frac{1}{s+1} + \frac{1}{2} \left[\frac{1}{s} - \frac{1}{s+2} \right]$$

$$= \frac{1.5}{s} - \frac{1}{s+1} - \frac{0.5}{s+2}$$

$$C(t) = L^{-1} \{C(s)\}$$

$$C(t) = (1.5 - e^{-t} - 0.5e^{-2t}) u(t)$$

Response will be

Q3 A system is represented by a relation given below:

$$X(s) = R(s) \cdot \frac{100}{s^2 + 2s + 50}$$

if r(t) = 1.0 unit, find the value of x(t) when $t \to \infty$.

Solution:

Since,

$$r(t) = 1$$

Taking Laplace transform,

:.

$$R(s) = \frac{1}{s}$$

Applying final value theorem,

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} s X(s)$$

$$= \lim_{s \to 0} s \cdot \frac{1}{s} \cdot \frac{100}{s^2 + 2s + 50} = 2.0 \text{ units}$$

(a) The Laplace equation for the charging current, *i*(*t*) of a capacitor arranged in series with a resistance is given by

$$I(s) = \frac{sC}{1 + sRC} \cdot E(s)$$

The circuit is connected to a supply voltage of E. If E=100 V, R=2 M Ω , C=1 μF . Calculate the initial value of the charging current.

(b) A series circuit consisting of resistance *R* and an inductance of *L* is connected to a d.c. supply voltage of *E*. Derive an expression for the steady-state value of the current flowing in the circuit using final value theorem.

Solution:

(a) Since,

$$E = 100 v(t)$$

Taking Laplace Transform, E =

E = 100 (t) volts,

:.

$$E(s) = \frac{100}{s}$$

Substituting the given values,

$$I(s) = \frac{1 \times 10^{-6} s}{(2 \times 10^{6} \times 1 \times 10^{-6} s + 1)} \cdot \frac{100}{s} = \frac{10^{-6} s}{2s + 1} \cdot \frac{100}{s}$$

Applying the initial value theorem,

$$i(0^+) = \lim_{t \to 0} i(t) = \lim_{s \to \infty} s I(s)$$

$$i(0^{+}) = \lim_{s \to \infty} s \cdot \frac{10^{-4}}{1 + 2s} = \lim_{s \to \infty} \cdot \frac{10^{-4}}{\frac{1}{s} + 2} = 50 \,\mu\text{A}$$

(b) The differential equation relating the current i(t) flowing in the circuit and the input voltage E is given by

$$E = R i(t) + L \frac{di(t)}{dt}$$

Taking Laplace transform of the equation yields,

$$E(s) = RI(s) + L[(sI(s) - i(0^{+}))]$$

Assume,

$$i(0^+) = 0$$

$$E(s) = RI(s) + LsI(s)$$

∴ E is constant (d.c. voltage)

$$E(s) = \frac{E}{s} = RI(s) + Ls I(s)$$

$$I(s) = \frac{E}{s(R+sL)}$$

Applying the final value theorem,

$$i_{ss} = \lim_{t \to \infty} i(t) = \lim_{s \to 0} sI(s) = \lim_{s \to 0} \frac{sE}{s(R+sL)}$$
$$i_{ss} = \frac{E}{R}$$

Solution:

Consider a field controlled separately excited DC motor.

Constant armature in field into the motor,

$$\begin{aligned} & \phi_f \propto I_f \\ & \phi_f = k_f I_f \\ & T_m \propto \phi_f I_a \\ & T_m = k' \phi_f I_a \\ & T_m = k' k_f I_f I_a \\ & T_m = k_m k_f I_f \end{aligned}$$

where, $k_m = KI_a = \text{constant}$

$$e_f = L_f \frac{di_f}{dt} + R_f I_f$$

$$T_m = J_m \frac{d^2 \theta_m}{dt^2} + B_m \frac{d\theta_m}{dt}$$

$$(s) = J_s^2 \theta_s(s) + B_s s \theta_s$$

$$T_m(s) = J_m s^2 \theta_m(s) + B_m s \theta_m(s)$$

$$T_m(s) = (J_m s^2 + B_m s) \theta_m(s)$$

$$E_{f}(s) = (sL_{f} + R_{f}) I_{f}(s)$$

$$= (sL_{f} + R_{f}) \frac{T_{m}(s)}{k_{f}k_{m}}$$

$$E_{f}(s) = \frac{(sL_{f} + R_{f})(J_{m}s^{2} + B_{m}s) \theta_{m}(s)}{k_{f}k_{m}}$$

$$\frac{\theta_{m}(s)}{E_{f}(s)} = \frac{k_{m}k_{f}}{s(sL_{f} + R_{f})(J_{m}s + B_{m})} = \frac{k_{m}k_{f}}{B_{m}R_{f}s\left(1 + \frac{J_{m}}{B_{m}}s\right)\left(1 + \frac{sL_{f}}{R_{f}}\right)}$$

$$\frac{\theta_{m}(s)}{E_{f}(s)} = \frac{k_{m}k_{f}}{sB_{m}R_{f}(1 + \tau_{m}s)(1 + \tau_{f}s)}$$

$$\tau_{m} = \text{motor time constant} = J_{m}/B_{m}$$

$$\tau_{f} = \text{field time constant} = L_{f}/R_{f}$$

The impulse response of a system S_1 is given by $y_1(t) = 4e^{-2t}$. The step response of a system S_2 is given by $y_2(t) = 2(1 - e^{-3t})$. The two systems are cascaded together without any interaction. Find response of the cascaded system for unit ramp input.

Solution:

(a) Taking the Laplace transform of the response of S_1 , we get

$$Y_{1}(s) = \frac{4}{s+2},$$

$$X_{1}(s) = 1 \dots (x(t) = \delta(t))$$

$$G_{1}(s) = \frac{Y_{1}(s)}{X_{1}(s)} = \frac{4}{s+2}$$
[:: Y_{1}(s) = 1]

Therefore,

Taking the Laplace transform of the response of S_2 , we get

$$Y_{2}(s) = 2\left(\frac{1}{s} - \frac{1}{s+3}\right) = \frac{6}{s(s+3)}$$

$$Y_{2}(s) = \frac{1}{s} \dots (x_{2}(t) = u(t))$$

$$G_{2}(s) = \frac{Y_{2}(s)}{X_{2}(s)} = \frac{6}{s(s+3)} \cdot s = \frac{6}{s+3}$$

Thus,

(b) The transfer function of the cascaded system is

$$G(s) = G_1(s)G_2(s) = \frac{24}{(s+2)(s+3)}$$

The Laplace transform of unit ramp is $R(s) = \frac{1}{s^2}$. Therefore,

$$G(s) = \frac{C(s)}{R(s)}$$

$$C(s) = \frac{24}{(s+2)(s+3)} \cdot \frac{1}{s^2}$$

$$\equiv \frac{A}{s^2} + \frac{B}{s} + \frac{C}{s+2} + \frac{D}{s+3}$$

$$A = \frac{24}{(s+2)(s+3)} \Big|_{s=0} = 4$$

$$B = \frac{d}{ds} \Big[s^2 C(s) \Big]_{s=0}$$

$$= \frac{d}{ds} \Big[\frac{24}{(s+2)(s+3)} \Big] = -\frac{24(2s+5)}{(s+2)^2(s+3)^2} \Big|_{s=0}$$

$$= -\frac{10}{3}$$

$$C = \frac{24}{s^2(s+3)} \Big|_{s=-2} = 6$$

$$D = \frac{24}{s^2(s+2)} \Big|_{s=-3} = -\frac{8}{3}$$

$$C(s) = \frac{4}{s^2} - \frac{10}{3} s + \frac{6}{s+2} - \frac{8}{3} e^{-3t}$$

Taking inverse Laplace transform.

Therefore,

$$c(t) = 4t - \frac{10}{3}u(t) + 6e^{-3t} - \frac{8}{3}e^{-3t}$$