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1 Introduction

CHAPTER

KXl (2) A control system is defined by following mathematical relationship

2
d—'2x+6d—x+5x=12(1—e'2’)
at at

Find the response of the system at t —»

(b) A function y(t) satisfies the following differential equation
ay(t)
t) =8(t
Loy =8)
Where §(t) is delta function. Assuming zero initial condition and denoting unit step function by u(t).
Find y(t).

Solution:
(a) Taking LT on both sides

(82 + 65 + 5) X(s) = 12{1_L}

S S$+2
24
s+ 1)(s+5)X(s) =
(s+1)(s+5)X(s) 3512
24
X(s) =
)= s 716+ (6+5)
Response at t — «
Using final value theorem,
lim x(®) = im [sX(S)] | _ im sx24 _o4
i s—-0 s-505(s+1)(s+2)(s+5)

(b) Taking Laplace transform on both sides
Y(s)[s+ 1] =1
Y(s)=
s+1
By taking inverse Laplace transform

y(t) = etu(t)

The response h(t) of a linear time invariant system to an impulse §(t), under initially relaxed condition
is h(t) = et + e 2. Find the response of this system for a unit step input u(t)?

Solution:
Transfer function is given by

H(s)= L{et+e2)= 1, 1
s+1 s+2

Cs)_ 1, 1
Ris) s+1 s+2

H(s) =
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R(s) = 3 (step input)
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C(S)=Fw’(s)-/—/(s)=%[ L

S B N S
s s+1 2|s s+2

_15 1 05
s s+1 s+2
Response will be o(t) = L7H{C(s)}

c(t) = (1.5-et-0.5e2) u(t)

A system is represented by a relation given below:
100

s +2s5+50

if (t) = 1.0 unit, find the value of x(f) when t — oo.

X(s) = R(s)-

Solution:
Since, r(t)y =1
Taking Laplace transform,
;
R(s) = 3
Applying final value theorem,
lim x(f) = lim sX(s)
t—eo s—0
. 1 100
= lims-—

s50 S §2+25+50

s+1 s+2

1 1
}: Ss+7) (5+2)(9)

= 2.0 units

m (a) The Laplace equation for the charging current, i(f) of a capacitor arranged in series with a resistance

is given by

sC
I(s) = 1+sRC'E(S)

The circuit is connected to a supply voltage of E. If E= 100V, R =2 MQ, C = 1 uF. Calculate the

initial value of the charging current.

(b) A series circuit consisting of resistance R and an inductance of L is connected to a d.c. supply
voltage of E. Derive an expression for the steady-state value of the current flowing in the circuit

using final value theorem.

Solution:
(a) Since, E = 100 v(1)
Taking Laplace Transform,  E = 100 (t) volts,
s

Substituting the given values,
1x107°s

1100 _10°s 100

I(s) =

@2x10°x1x10%s+7) s 2s+1 s
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Applying the initial value theorem,

i(0%) = lim i(t) = lim s I(s)

t—0 S—oo
—4 —4
(0% = lim s-—2_ = Jim -10 =50 pA
soe 1428 s—oe L
S

(b) The differential equation relating the current i(f) flowing in the circuit and the input voltage Eis given by

L i)
E=Ri(t)+L pm . i
Taking Laplace transform of the equation yields, +
E(s) = R1(s) + L[(sI(s) - i(0%))] R
Assume, i(0*) =0 E
. E(s) = RI(s) + LsI(s) L
-+ Eis constant (d.c. voltage)
£ "o
E(s) = 5° RI(s) + Ls I(s)
E
I(s) = ——=—
(s) S(R+sL)
Applying the final value theorem,
. . SsE
i.= lim i) = limsi(s)=Ilm ———
ss [lir.l, i) sI—>O S (S) sI—>O S(R+ SL)
E
lss = E

m Determine the mechanical time constant of rotor of an electrical machine in terms of its moment of
inertia J kg-m? and windage cum friction coefficient f N-m/rad/s. Also explain the method to determine
mechanical time constant experimentally in laboratory.

Solution:
Consider a field controlled separately excited DC motor.
Constant armature in field into the motor,

¢f°c [f +
O = Kl
Tm o q)f[a
Tm = Kq)f[a
T =Kk,
Tm = km kfIf w,
where, k=K1, = constant _ " J_ = inertia
© Tn"Q Bm = fricti
e:L%-I_R[ ., B = friction
f f gt il
2
T = L} e’”+B Dy

NG Mot
T (s)=J 5?0, (s)+ B s6(s)
T(s) = (J 5%+ B_s)0,(s)

m
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Efs) = (sL;+ R) I,(s)
(sLy + Ry) /T(m(S)

fm

(SLy +Re)(Im S + BysS) Om(S)

4
2]
)
|

ki,
0(5) _ Kook; kmkf
Ef(s) s(sLs + R )(J,,s +B,,) Bmes( L Im I SJ(H s_ij
m Rf
em(S) _ kmkf

E(s)  SByR;(1+1,8)(1+15)

T, = motor time constant = J, /B,
T, = field time constant = L,/ R,

m The impulse response of a system S, is given by y,(t) = 4e2. The step response of a system S, is given
by y,(t) = 2(1 - 7%). The two systems are cascaded together without any interaction. Find response of
the cascaded system for unit ramp input.

Solution:
(a) Taking the Laplace transform of the response of S;, we get
4
Y(s)= ——,
1( ) s$+2
X,(s) = (x(t) =8(t))
Yi(s) 4
Therefore, G(s)= P22 =~ Y (s)=1
1(9) X(s) 512 [ Yi(s)=1]

Taking the Laplace transform of the response of S,, we get

St 1 6
Y2(s)_2(s s+3j s(s+3)

1 _
< e lelt) = (D)

Ya(s) _ 6 g= 6
X5(s)  S(s+3) S+3

Thus, G(s) =

(b) The transfer function of the cascaded system is

G(s) = G(s)Ga(s) = ﬁ

;
The Laplace transform of unit ramp is R(s) = 2 Therefore,

_ Qs
G(s) = As)
) = 24 i
(s+2)(s+3) &
_ A B C D
= St—t+t—F—+——
s S Ss+2 s+3
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A:

Q) =

oo packsce VALY

_ 24
(s+2)(s+3)

s=0

sl

24(2s+5) |

d { 24 }__
ds[(s+2)(s+3)|  (s+22(s+37|,_q

_10
3

24
°(s+3) s

_24
2(s+2) e_3

4 10 6 8 4

s St———=
s 3 s+2 3

Taking inverse Laplace transform.

Therefore,

ch) = 4t- Eu(z‘) reed _Sgu
3 3
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