

POSTAL BOOK PACKAGE 2024

CONTENTS

ELECTRICAL ENGINEERING

Objective Practice Sets

Signals and Systems

1.	Basics of Signals and Systems	2
2.	Linear Time Invariant Systems	2
3.	Continuous Time Fourier Series	5
4.	Continuous Time Fourier Transform	3
5.	Laplace Transform 4	3
6.	Z-Transform	4
7.	DTFS, DTFT, DFT and FFT	6
8.	Sampling 7	5

Basics of Signals and Systems

MCQ and NAT Questions

- **Q.1** If a function f(t) u(t) is shifted to right side by t_0 , then the function can be expressed as
 - (a) $f(t-t_0) u(t)$
 - (b) $f(t) u(t-t_0)$
 - (c) $f(t-t_0) u(t-t_0)$
 - (d) $f(t + t_0) u(t + t_0)$
- Q.2 An impulse function consists, of
 - (a) entire frequency ranges with same relative phase
 - (b) infinite bandwidth with linear phase variations
 - (c) pure d.c.
 - (d) large d.c. along with weak harmonics.
- **Q.3** If a(n) is the response of a linear, time-invariant, discrete-time system to a unit step input, then the response of the same system to a unit impulse input is
 - (a) $\frac{d}{dn}[a(n)]$
 - (b) *na(n)*
 - (c) a(n) a(n-1)
 - (d) a(n+1)-2a(n)+a(n-1)
- Q.4 The unit impulse response of a linear time invariant system is the unit step function u(t). For t > 0, the response of the system to an excitation $e^{-at}u(t)$, a > 0 will be
 - (a) ae-at
- (b) $(1/a)(1-e^{-at})$
- (c) $a(1 e^{-at})$
- (d) $1 e^{-at}$
- Q.5 The unit step response of a system is given by $(1 - e^{-at}) u(t)$, the impulse response is given by
 - (a) $e^{\alpha t} u(t)$
- (b) $e^{-\alpha t}u(t)$
- (c) $\frac{1}{\alpha}e^{-\alpha t}u(t)$ (d) $\alpha e^{-\alpha t}u(t)$
- **Q.6** A function f(t) is an even function, if for all values of t
 - (a) f(t) = f(-t)
- (b) f(t) = -f(-t)
- (c) f(t) = f(t + T/2) (d) f(t) = -f(t + T/2)

(*T* is the time-period of the function)

- The function $\delta(2n)$ is equal to
 - (a) $\delta(n)$
- (b) $\frac{1}{2}\delta(n)$
- (c) $2\delta(n)$
- (d) $2\delta\left(\frac{n}{2}\right)$
- **Q.8** If $x_1(t) = 2 \sin \pi t + \cos 4\pi t$ and $x_2(t) = \sin 5\pi t + 3 \sin 13\pi t$, then
 - (a) $x_1(t)$ and $x_2(t)$ both are periodic.
 - (b) $x_1(t)$ and $x_2(t)$ both are not periodic.
 - (c) $x_1(t)$ is periodic, but $x_2(t)$ is not periodic.
 - (d) $x_1(t)$ is not periodic, but $x_2(t)$ is periodic.
- Q.9 Energy signals are the signals with

 - (a) $0 < E < \infty$, P = 0 (b) $0 < E < \infty$, $P = \infty$

 - (c) $0 < P < \infty$, $E = \infty$ (d) $0 < P < \infty$, E = 0
- Q.10 Power signals are the signals with
 - (a) $0 < E < \infty, P = 0$
 - (b) $0 < E < \infty, P = \infty$
 - (c) $0 < P < \infty$, $E = \infty$
 - (d) $0 < P < \infty, E = 0$
- Q.11 A signum function is
 - (a) zero for t greater than zero
 - (b) zero of t less than zero
 - (c) unity for t less than zero
 - (d) 2 u(t) 1
- Q.12 The average value of the waveform $x(t) = 4 \cos 4t - 5 \sin 5t$ is
 - (a) 0
- (b) $-\left(\frac{2}{\pi}\right)$
- (d) $\frac{20}{\pi}$
- Q.13 If two signals are given as,

$$x_1(t) = e^{jt}$$
 and $x_2(t) = e^{t(j+1)}$

Then which one of the following statements is correct?

- (a) Both $x_1(t)$ and $x_2(t)$ are periodic
- (b) Only $x_1(t)$ is periodic
- (c) Only $x_2(t)$ is periodic
- (d) Neither $x_1(t)$ nor $x_2(t)$ is periodic

POSTAL BOOK PACKAGE 2024

- **Q.14** If a continuous time signal x(t) can take on any value in the continuous interval $(-\infty, \infty)$, it is called
 - (a) Deterministic signal (b) Random signal
 - (c) Analog signal
- (d) Digital signal
- **Q.15** The function f(t) shown in the figure can be represented as

(a)
$$u(t) + u(t-T) - \frac{(t-T)}{T}u(t-T) + \frac{(t-2T)}{T}u(t-2T)$$

(b)
$$u(t) - u(t-T) + \frac{(t-T)}{T}u(t-T) - \frac{(t-2T)}{T}u(t-2T)$$

(c)
$$u(t) - u(t-T) - \frac{(t-T)}{T}u(t-T) - \frac{2(t-2T)}{T}u(t-2T)$$

(d)
$$u(t) + u(t-T) + \frac{(t-T)}{T}u(t-T) - \frac{2(t-2T)}{T}u(t-2T)$$

- Q.16 Which of the following statements is/are true?
 - 1. If x(t) is a continuous time periodic signal with period T, then y(t) = x(2t) will also be periodic with period 2T.
 - 2. Sum of two continuous time periodic signals may or may not be periodic.
 - 3. Sum of two discrete time periodic signals may or may not be periodic.
 - (a) 2 and 3 only
- (b) 1 and 3 only
- (c) 1 and 2 only
- (d) 2 only
- **Q.17** In the graph shown below, which one of the following express v(t)?

- (a) (2t+6)[u(t-3)+2u(t-4)]
- (b) (-2t-6)[u(t-3) + u(t-4)]
- (c) (-2t+6)[u(t-3)+u(t-4)]
- (d) (2t-6)[u(t-3)-u(t-4)]
- Q.18 Match List-I with List-II and select the correct answer using the code given below the Lists:

List-I

List-II

- A. Even signal
- $1. \quad x(n) = \left(\frac{1}{4}\right)^n u(n)$
- B. Causal signal
- **2.** x(-n) = x(n)
- C. Periodic signal
- **3.** x(t) = u(t)
- **D.** Energy signal
- **4.** x(n) = x(n + N)

Codes:

- A B C D
- (b) 1 3 4 2
- (c) 2 4 3 1
- (d) 1 4 3 2
- **Q.19** Which one of the following relation is not correct? (a) $f(t)\delta(t) = f(0)\delta(t)$

(b)
$$\int_{-\infty}^{\infty} f(t) \, \delta(t-\tau) \, dt = f(\tau)$$

(c)
$$f(t) * \delta(t-\tau) = f(t-\tau)$$

(d)
$$\int_{-\infty}^{\infty} \delta(at) dt = 1$$

Q.20 Which of the following signals are periodic?

1.
$$\cos\left(\frac{\pi}{3}n\right) + \sin\left(\frac{\pi}{3}n\right)$$

2.
$$\cos\left(\frac{1}{2}n\right) + \cos\left(\frac{1}{3}n\right)$$

- 3. Even $\{\cos(4\pi t)u(t)\}$
- 4. Even $\{\sin(4\pi t)u(t)\}$
- (a) 1 and 4 only
- (b) 1, 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 3 and 4 only
- Q.21 The power in the signal

$$s(t) = 8\cos\left(20\pi t - \frac{\pi}{2}\right) + 4\sin(15\pi t)$$
 is

- (a) 40
- (b) 41
- (c) 42
- (d) 82
- Q.22 Statement (I): The total energy of an energy signal falls between the limits 0 and ∞ .

Statement (II): The average power of an energy signal is zero.

- (a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I)
- (b) Both Statement (I) and Statement (II) are individually true but Statement (II) is **NOT** the correct explanation of Statement (I)
- (c) Statement (I) is true but Statement (II) is false
- (d) Statement (I) is false but Statement (II) is true

Q.23 If a plot of a signal x(t) is as shown in the Figure.

Then the plot of the signal x(1-t) will be:

Q.24 The signal $x(t) = A \cos(\omega_0 t + \phi)$ is

- (a) an energy signal
- (b) a power signal
- (c) an energy as well as a power signal
- (d) neither an energy nor a power signal

Q.25 Double integration of a unit step function would lead to

- (a) an impulse
- (b) a parabola
- (c) a ramp
- (d) a doublet

Q.26 If $\int_{0}^{\infty} e^{3\left(\frac{t}{2}-1\right)} \cdot \sin\frac{\pi t}{88} \cdot \delta(2-t) = \frac{-1}{\sqrt{2}}$.

Then the maximum value of β is

(a) -1

Q.27 For a periodic waveform to be half-wave symmetric, it must be represented by a function satisfying

- (a) f(t) = f(t + T/2)
- (b) f(t) = -f(t + T/2)
- (c) f(t) = f (-t)
- (d) f(t) = f(-t)

Q.28 In the given figure, the effective value of the waveform is

- (a) 5.0
- (b) 2.5
- (c) $\sqrt{2.5}$
- (d) $\sqrt{50}$

Q.29 Consider the sequence

$$x[n] = \begin{bmatrix} -4 - j5 & 1 + j2 & 4 \end{bmatrix}$$

The conjugate anti-symmetric part of the sequence is

- (a) [-4-j2.5]
- *j*2 4 - j2.5
- (b) [-j2.5]
- i2.51
- (c) [-j5]
- *j*2

1

1

0] 4]

- (d) [-4

Q.30 If $y(t) = \int x(t).\delta'(t-2.5)dt$. Then value of y(t) is

- (a) 2
- (b) -2
- (c) -3
- (d) dependent on 't'

Q.31 x[n] is defined as,

$$x[n] = \begin{cases} 0 & \text{for } n < -2 \text{ and } n > 4 \\ 1, & \text{otherwise} \end{cases}$$

Determine the value of n for which x[-n-2] is guaranteed to be zero.

- (a) n < 1 and n > 7 (b) n < -4 and n > 2
- (c) n < -6 and n > 0 (d) n < -2 and n > 4

Multiple Select Questions (MSQ)

- Q.41 For which of the following function(s) the time scaling operation will effect its original nature of the function:
 - (a) $\delta(t)$
 - (b) u(t)
 - (c) r(t)
 - (d) A rectangular pulse within finite duration.
- **Q.42** A discrete system with input x[n] and output y[n]are related by

$$y[n] = \sum_{n = -\infty}^{\infty} x[n]e^{-j\omega n}$$

The system is

- (a) unstable
- (b) stable
- (c) time variant
- (d) time invariant

Q.43 Consider a continuous time signal

$$x(t) = 2\cos\left(\frac{\pi t}{4}\right) * \delta\left(\frac{t}{2} - 1\right)$$
. Then for which value

of 't', signal x(t) is zero.

- (a) t = 0
- (b) t = 2
- (c) t = 1
- (d) t = 4
- Q.44 Consider a discrete-time periodic signal

$$x[n] = \begin{cases} 1, & 0 \le n \le 7 \\ 0, & 8 \le n \le 9 \end{cases}$$
 with period of $N = 10$. A function $y[n]$ is defined as $y[n] = \xi[n] - \xi[n-1]$, then the correct options regarding $y[n]$ are

- (a) period N = 10
- (b) period N = 8
- (c) $\sqrt{n} = \{1,0,0,0,0,0,0,0,-1,0\}$ for one time period
- (d) $y[n] = \{1,0,0,0,0,0,-1,0\}$ for one time period

Basics of Signals and Systems Answers

- **1.** (c)
- **2**. (a)
- **3**. (c)
- **4**. (b)
- **5**. (d)
- **6**. (a)
- **7**. (a)
- **8**. (a)
- **9**. (a)

- **10**. (c)
- **11**. (d)
- **12**. (a)

21. (a)

- **13**. (b)
- **14**. (c)
- **15**. (a) **24**. (b)
- **16**. (d)
- **17**. (d)
- **18**. (a)

- **19**. (d) **28**. (d)
- **20**. (c) **29**. (a)
- **30**. (a)
- **31**. (c)
- **32**. (a)
- **33**. (–2)
- **25**. (b)
- **26**. (b)

44. (a,c)

27. (b)

- **37**. (4)
- **38**. (24) **39**. (0)
- **40**. (0.232) **41**. (a,c,d) **42**. (b,c) **43**. (a,d)

22. (b)

23. (a)

- **34**. (8)
- **35**. (4)
- **36**. (2)

Explanations

Basics of Signals and Systems

Since f(t)u(t) = f(t) for t > 0 also we know $U(t-t_0) = 1$, for $t > t_0$

Here in right side shifting that means $t_0 > 0$.. by property on shifting right side,

$$\textit{f(t)} \ \textit{U(t)} = \xrightarrow{\quad \text{on} \quad \quad } \textit{f(t-t_0)} \ \textit{U(t-t_0)}$$

2. (a)

3. (c)

For discrete time system,

$$\delta(n) = u(n) - u(n-1)$$

For continuous time system,

$$\delta(t) = \frac{d}{dt}u(t)$$

4. (b)

Since, for unit impulse, response is unit step i.e. transfer function is integrator.

$$\therefore y(t) = \int_{-\infty}^{t} e^{-at} u(t) \qquad u(t) = \begin{cases} 1, & t > 0 \\ 0, & \text{elsewhere} \end{cases}$$
$$= \int_{0}^{t} e^{-at} dt = \frac{1}{a} (1 - e^{-at})$$

5. (d)

$$d(t) = \frac{d}{dt}u(t)$$
Impulse response = $\frac{d}{dt}((1 - e^{-\alpha t})u(t))$

$$= \frac{d}{dt}(u(t) - u(t)e^{-\alpha t})$$

$$= \delta(t) - \delta(t)e^{-\alpha t} + \alpha e^{-\alpha t}u(t)$$

$$\therefore f(t) \delta(t) = f(0) \delta(t)$$

6. (a)

For even function, f(t) = f(-t)For odd function, f(t) = -f(-t)

 \therefore Impulse response = $\alpha e^{-\alpha t} u(t)$

7. (a)

Properties:

For continuous system

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

For discrete system

$$\delta[an] = \delta[n]$$

8. (a)

$$x_{1}(t) = 2\sin\pi t + \cos 4\pi t$$

$$\omega_{1} = \frac{\pi}{1}$$

$$\omega_{2} = \frac{4\pi}{1}$$

$$\omega_{0} = \text{HCF}(\omega_{1}, \omega_{2})$$

$$= \text{HCF}\left(\frac{\pi}{1}, \frac{4\pi}{1}\right) = \pi$$

$$T = \frac{2\pi}{\omega_{0}} = \frac{2\pi}{\pi} = 2$$

$$x_{2}(t) = \sin 5\pi t + 3\sin 13\pi t$$

$$\omega_{1} = \frac{5\pi}{1}; \quad \omega_{2} = \frac{13\pi}{1}$$

$$\omega_{0} = \text{HFC}(5\pi, 13\pi)$$

$$\omega_{0} = \pi$$

$$T = \frac{2\pi}{\omega_{0}} = \frac{2\pi}{\pi} = 2$$

$$T = \frac{2\pi}{\omega_{0}} = 2$$

.. Both are periodic.

9. (a)

Energy signal: $E \neq \infty$, P = 0, where E is energy and P is average power.

10. (c)

Power signal : $E = \infty$, $P \neq \infty$

11. (d)

Signum function is

$$2u(t) - 1 = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}$$
$$u(t) = 1, \quad t > 0$$
$$= 0, \quad \text{elsewhere}$$

12. (a)

The collective signal is periodic with period

$$= LCM\left(\frac{\pi}{2}, \frac{2\pi}{5}\right) = 2\pi.$$

Average value of a sinusoidal signal = 0.

$$V_{\text{avg.}} = \frac{1}{T} \int_{0}^{T} (v_{1}(t) + v_{2}(t)) dt$$

$$= \frac{1}{T} \int_{0}^{T} (v_{1}(t) dt + \frac{1}{T} \int_{0}^{T} v_{2}(t) dt$$

$$= V_{\text{avg}_{1}} + V_{\text{avg}_{2}} = 0$$

13. (b)

Only complex exponential are periodic.

$$x_2(t) = e^{t(j+1)} = e^{jt} \underbrace{e^t}_{t}$$

(because of this term $x_2(t)$ is non-periodic)

14. (c)

If a continuous time signal can take on any value in the continuous interval $(-\infty, \infty)$ then this signal is known as analog signal.

15. (a)

For the given f(t)

Step (1) = u(t) = u(t) both steps are of unity magnitude

$$Step (2) = u(t-T) = u(t-T)$$

Hence ramp (3) =
$$\frac{-1}{T} \{ r(t-T) - r(t-2T) \}$$

$$= \frac{-1}{T} \{ (t-T)u(t-T) - (t-2T)u(t-2T) \}$$

Since,
$$r(t) = tu(t)$$

Hence,

$$f(t) = u(t) + u(t-T) - \frac{(t-T)}{T}u(t-T) + \frac{(t-2T)}{T}u(t-2T)$$

16. (d)

- If x(t) is periodic with time period T, then y(t) = x(2t) will be periodic with time period T/2.
- Sum of two discrete time periodic signals is always periodic.

17. (d)

v(t) consist 1 Ramp and 1 negative step,

Hence Ramp (1) having slope = 2

So Ramp (1) =
$$2\{r(t-3) - r(t-4)\}$$

step (2) = $-2u(t-4)$
So, $v(t) = 2r(t-3) - 2r(t-4) - 2u(t-4)$
= $2(t-3) u(t-3) - 2(t-4)u(t-4) - 2u(t-4)$
= $2(t-3) u(t-3) - 2(t-3)u(t-4)$
= $(2t-6) \{u(t-3) - u(t-4)\}$

18. (a)

- Even signal x(n) = x(-n)
- Causal system is one in which output at any time depends only on present and/or past values of input.
- Periodic signal is one which satisfies
 x(n) = x(n + N);
 N→Fundamental period.
- Energy signal is absolutely summable i.e. x(n)

$$= \left| \left(\frac{1}{4} \right)^n u(n) \right| < \infty$$

19. (d)

$$\int_{-\infty}^{\infty} \delta(at) dt = \frac{1}{a}$$

Since,
$$\delta(at) = \frac{1}{|a|} \delta(t)$$

20. (c)

1.
$$\cos\left(\frac{\pi}{3}n\right) + \sin\left(\frac{\pi}{3}n\right) \Rightarrow \text{periodic}$$

$$\text{Period} = \frac{2\pi \times 3}{\pi} = 6$$

2.
$$\cos\left(\frac{1}{2}n\right) + \cos\left(\frac{1}{3}n\right) \Rightarrow \text{non-periodic}$$

3. Even
$$\{\cos(4\pi t)u(t)\}\$$

$$= \frac{\cos(4\pi t)u(t) + \cos(-4\pi t)u(-t)}{2}$$

$$= \frac{\cos 4\pi t}{2} \Rightarrow \text{Periodic}$$

4. Even
$$\{\sin(4\pi t)u(t)\}\$$

$$= \frac{\sin(4\pi t)u(t) + \sin(-4\pi t)u(-t)}{2} \Rightarrow \text{non-periodic}$$

21. (a)

Given:
$$s(t) = 8\cos\left(20\pi t - \frac{\pi}{2}\right) + 4\sin(15\pi t)$$

 $s(t) = 8\sin 20\pi t + 4\sin 15\pi t$

When both the sinusoidal signal having different frequency. Then overall power $(P) = P_1 + P_2$

$$P = \frac{8^2}{2} + \frac{4^2}{2} = 40$$

22. (b)

Energy of any signal is given by

$$E = \int_{-\infty}^{\infty} |x^2(t)| dt$$

and power of a signal is given by

$$P = \lim_{T \to \infty} \int_{-T/2}^{T/2} \frac{1}{T} |x^2(t)| dt$$

For energy signal, Energy is finite

$$P = \lim_{T \to \infty} \frac{E}{T}$$

$$P = \frac{E}{T} = 0$$