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CHAPTER

Fluid Properties

1.1 INTRODUCTION

e A substance in the liquid or gas phase is referred as a fluid.

e Fluid is capable of flowing and conforms to the shape of the containing vessel.

e Fluid undergoes continuous deformation under the influence of shearing forces no matter how small
the forces may be.

e This property of continuous deformation in technical terms is known as ‘flow property’, whereas this
property is absent in solids.

e The distinction between a solid and a fluid is made on the basis of their ability to resist an applied
shear stress. A solid can resist an applied shear stress by deforming itself by a fixed amount. On the
other hand, a fluid shows its flow property under the application of shear stresses due to which it
deforms continuously and does not come back to its previous position.

e |n case of solids, total deformation is significant, whereas, in case of fluids, rate of deformation is
significant in defining the properties.

e [fafluidis at rest, there can be no shearing forces acting and therefore, all forces in the fluid must be
perpendicular to the planes upon which they act.

e Fluids may be classified as Ideal fluids or real fluids.

(i) Ideal Fluids: Ideal fluids are those fluids which have neither viscosity nor surface tension and they
are incompressible. In nature, the ideal fluids do not exist and therefore, they are only imaginary
fluids.

(ii) Real Fluids: Practical or real fluids are those fluids which possess viscosity, surface tension and
compressibility.

1.2  FLUID MECHANICS

e Fluid mechanics is the study of fluids at rest (fluid statics) or in motion (fluid dynamics).

e The basic laws which are applicable to any fluid for analysis of any problem in fluid mechanics, are
(i)  Thelaw of conservation of mass (i) Newton’s second law of motion
(iii) The principle of angular momentum (iv) The first law of thermodynamics
(v) The second law of thermodynamics

MRDE ERSYH www.madeeasypublications.org smwg“ﬁi&“ﬁfi CE
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FLUID AS A CONTINUUM

In a fluid system on macro scale, the intermolecular spacing between the fluid particles is treated as
negligible and the entire fluid mass system is assumed as continuous distribution of mass, and such
continuous mass of fluid is known as continuum.

This assumption is valid only if the fluid system is very large as compared to the spacing between
the particles. (Continuum is invalid at low pressure i.e. at high elevation)

As a consequence of the continuum, each fluid property is assumed to have a definite value at every
pointin space. Thus, the fluid properties such as density, temperature and velocity etc., are considered
as continuous functions of position and time.

For Example:

Velocity field, V = V(xy zt) or V = ui+vj+wk

where, each velocity component, u, vand w will be a function of x, y, zand t.
\7(x, v, z,t) indicates the velocity of a fluid particle that is passing through the point x, y, z at time
instant t.

Thus, the velocity is measured at the same location at different points of time.
In case of steady flow,

oV
2 -0
ot
Therefore, V= \7(x,y,z)

The No Slip Condition

Consider the flow of a fluid over a stationary solid surface that is non-porous. As per the experimental
observation, it has been found out that a fluid in motion comes to a complete stop at the surface of
solid body and assumes zero relative velocity with solids surface. It represents that the fluid in direct
contact with a solid, stick to the surface and there is no slip. This is known as “no slip condition”.
The fluid property responsible for the no slip condition and development of the boundary layer is
Viscosity.

The no slip condition is responsible for the development of velocity profile.

Another consequence of no slip condition is the surface drag or skin friction drag.

FLUID PROPERTIES

Any characteristic of a fluid system is called a fluid property.
Fluid properties are of two types:

(i) Intensive Properties: Intensive properties are those that are independent of the size of the
system or the amount of material in it. Example: Temperature, pressure, density etc.

(ii) Extensive Properties: Extensive properties are those whose values depend on the size or
extent of the system. Example: Total mass, total volume, total momentum etc.

Following are some of the intensive and extensive properties of a fluid system.
(i) Viscosity (ii) Surfacetension (iii) Vapour pressure (iv) Compressibility and elasticity

www.madeeasypublications.org Solve;{ hﬁiﬁﬂfi CE
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1.4.1 Some other Important Properties

1.

Mass Density: Mass density or specific mass (p) of a fluid is the mass which it possesses per
unit volume. Its Sl unit is kg/mq.

Mass of fluid

P= Volume of fluid

2. Specific Weight: Specific weight or weight density (y) of a fluid is the weight it possesses per unit

volume. Its Sl unit is N/m8. The mass density and specific weight y has following relationship:
Y =pg; p =Y/g. Both mass density and specific weight depend upon temperature and pressure.
Relative Density (R.D.): It is defined as the ratio of density of one substance to the density of

other substance. Mathematically, p,, = 5—1
2

where, p,, = Relative density of substance ‘1" with respect to substance 2'.

Specific Gravity: Specific gravity (S) is the ratio of specific weight (or mass density) of a fluid to
the specific weight (or mass density) of a standard fluid. The standard fluid chosen for comparison
is pure water at 4°C for liquids and air or hydrogen for gases at some specified temperature and
pressure.

Specific weight of liquid  Specific weight of liquid

Stfor fiquid) = gperific weight of water = 9810 N/m®

Specific weight of gas

Specific weight of air

If specific gravity < 1 = Fluid is lighter than standard fluid.

If specific gravity > 1 = Fluid is heavier than standard fluid.

Specific gravity is unitless property.

Specific Volume: Specific volume of a fluid is the volume of fluid per unit mass. Thus it is the
reciprocal of density. It is generally denoted by v. Its Sl unit is m3/kg.

S(for gases) =

Example 1.1 Three litres of petrol weigh 23.7 N. Calculate the mass density, specific weight,

specific volume and specific gravity of petrol.

Solution :
. M Wilg W 237 .
Mass density of petrol, = —=—Y=—= = 0.805 kgl/litre = 805 kg/m3
yore Po = V7TV T gV 981x3 9 9
Mass density of water, p, = 1000 kg/m3
P, 805
Specific gravity of petrol = p_ = 1000 = 0.805
w
Specific weight of petrol = % = % = 7.9 N/litre = 7.9 kN/m?3
- Vv oA 1 T
Specificvolume = —=— = — =1.242 x 10° m/kg
M p,
MRDE ERSYH www.madeeasypublications.org Theory with | &g
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1.5 VISCOSITY

e Viscosity is the property of fluids by virtue of which they offer resistance to shear or angular deformation.

e |tis primarily due to cohesion (in case of liquids) and molecular momentum exchange (in case of
gases) between fluid layers, and as flow occurs, these effects appear as shearing stresses between
the moving layers.

| 8] b
M P M M P _P SF
i o o
5y Ly !
AL X ;
N o N o

(a)

Fig: (a) Fluid element at time t, (b) Deformation of fluid element at time t + 8¢, and
(c) Deformation of fluid element at time t + 25t.

e (Consider a fluid element between the two infinite plates. The rectangular fluid element is initially at
restattime ¢. Let us now suppose a constant rightward force 8F is applied to the upper plate so that
it is dragged across the fluid at constant velocity du. The relative shearing action of the plates
produces a shear stress, T, which acts on the fluid element and is given by

T = lim E = de ,
e 8A,-0 SAy dAy
where 8Ayis the area of contact of the fluid element with the plate and 8F _is the force exerted by the
plate on that element.
Various positions of the fluid element, illustrate the deformation of the fluid element from position
MNOP at time t, to M'NOP”at time t + 8¢, to M"NOP” at time t + 28t, due to the imposed shear stress.
The deformation of the fluid is given by

. . d
Deformation rate = lim 6—0( _ g
5t—0 Ot at

Distance between the points M and M’is given by,

81 =0udt ..(1)
Alternatively, for small angles, S/ = dyda ..(2)
Equating equations (1) and (2), dudt = dydar
o du
or — =
8t Oy
Taking the limits of both sides
m 3% _ jjm 3
A 5t~ d8t-038y
do  qu
dt — dy

Thus, the rate of angular deformation is equal to velocity gradient across the flow.

MRDE ERSY www.madeeasypublications.org saw}“ﬁiﬁﬂfi CE
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1.5.1 Newton’s law of viscosity

e According to Newton’s law of viscosity, shear stress is directly proportional to the rate of deformation
or velocity gradient across the flow.

A
T
i u+au
0 Slope = Coefficient of ay
i i i u
dynamic viscosity (u) -f du
y
au ao -
dyor at —_— U
Fig. Newton’s law of viscosity Fig. Velocity profile
au
Thus, Toc ——
dy
— au
= oy
where, w = Coefficient of dynamic viscosity
Dynamic Viscosity (u)

e Dimensionof u=[ML1T]

e Unit of u = Ns/m? or Pa.s

e InC.G.S. units, uis expressed as ‘poise’, 1 poise = 0.1 N-s/m?

e A 20°C and at standard atmospheric pressure, (W) =102 Ns/m?;
(W), = 1.81x 10° Ns/m?

water

e \Water is nearly 55 times viscous than air.
e Linearization of Newton’s law of viscosity: If the flow is taking place between
two parallel plates where the gap between the plates is very small then velocity

gradient is assumed to be constant. If the gap is large then velocity gradient will be
variable.

NOTE

Kinematic Viscosity (v)

e The kinematic viscosity (v) is defined as the ratio of dynamic viscosity to mass density of the fluid.
Therefore, v = u/p

e Dimensionofv =[L2T]

e Unit of v=m?/s or cm?/s (stoke, in C.G.S. units)

e 1stoke =10 m?s

e At 20°C and standard atmospheric pressure, v

water = 1 % 1076 m?/s, Vi = 19 % 10% m?/s

NOTE: Kinematic viscosity of air is about 15 times greater than the corresponding value of water.

MRDE ERSYH www.madeeasypublications.org 301veg hﬁiﬁinﬁg; CE
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1.5.2 Variation of viscosity with Temperature

Dynamic viscosity

1. Dynamic viscosity: Increase in temperature causes a decrease
in the dynamic viscosity of a liquid, whereas viscosity of gases
increases with temperature growth. : m
The reason for the above phenomena is that; in liquids; viscosity is
primarily due to molecular cohesion which decreases due to increase
in volume due to temperature increment, while in gases, viscosity /
is due to molecular momentum transfer which increases due to
increase in number of collision between gas molecules.
. . . . . . . L . ) Temperature
2. Kinematic Viscosity: Kinematic viscosity is ratio of dynamic Fig: Variation of Dynamics
viscosity to the density of fluid. In case of liquids with increase in Viscosity with Temperature
temperature, the dynamic viscosity as well as density both decrease
but decrease in dynamic viscosity is very high as compared to
density. So, overall kinematic viscosity will decrease for liquids.
On the other hand, in case of gases, with increase in temperature
dynamic viscosity increases and density decreases. So overall
kinematic viscosity increases for gases.

1.5.3 Variation of viscosity with pressure
1. Dynamic viscosity: In fluids, dynamic viscosity is practically independent of pressure except at
extremely high pressure.

2. Kinematic viscosity: In liquids, kinematic viscosity is independent of pressure at low to moderate
pressure.

In case of gases, density increases with increase in pressure, therefore kinematic viscosity
decreases.

1.5.4 Types of Fluids
The fluids are classified into following types based on shear stress variation with velocity gradient:
(i) Newtonian Fluids
o Fluids which obey newton’s law of viscosity are known as Newtonian fluids.
e  General relationship between shear stress and velocity gradient is given by,

T = A[g—;) +B
o For Newtonian fluids, n=1, A=uand B=0,
Thus T = M%
: = Yy

Examples: Air, water, Mercury, Petrol, Kerosene, etc.
(ii) Non-Newtonian Fluids
° Fluids for which shear stress is not directly proportional to deformation rate are Non-Newtonian
fluids.

Examples: Toothpaste and paint.

o Non-Newtonian fluids are commonly classified as having time-independent or time-dependent
behavior.

MRDE ERSY www.madeeasypublications.org Solve;{ hﬁiﬁﬂfi CE



Fluid Mechanics and

POSTAL Hydraulic Machines
MRDE ERSY BOOK PACKAGE 2025 Fluid Properties 7

&
&
Pseudoplastic fluid
. ° > \\\\eu plastic flui
a O 3 ~—~-
3 RN 8
= K 2
1] & Z B
5 N4 = - .
@ N o —~~ " Dilatant fluid
Ny @
@ g -
< Newtonian fluid
Ideal fluid
yd
Deformation rate, %’ Deformation rate, %’
@ y ®) d

Fig: (a) Variation Shear stress rate with deformation (b) Variation of Apparent viscosity with deformation rate

Relation between shear stress and rate of deformation for non-Newtonian fluid can be represented as:

n
dy

where, n = flow behavior index; A = consistency index; B = Residual strength

Above equation can also be represented as:

n-1
T = A[ﬁj [%]+B - n%-kB

dy dy ay
au n-1
where, n = A(d—) is referred as the apparent viscosity
y
NOTE: Dynamic viscosity (u) doesn’'t depend on the shear rate, while apparent viscosity (n) depends

on the shear rate.

Various types of non-Newtonian fluids are :

1.

Pseudoplastic fluids: Fluids in which the apparent viscosity decreases with increasing deformation
rate ( n< 1) are called pseudoplastic fluids or shear thinning fluid. Most Non-Newtonian fluids fall
into this group. These are time independent fluids.

Example: Polymer solutions, colloidal suspensions, milk, blood and paper pulp in water, etc.
Dilatant fluids: If the apparent viscosity increases with increasing deformation rate (n >1), then
the fluid is termed as dilatant or shear thickening fluid. These are time independent fluids.
Example: Suspensions of starch, saturated sugar solution, etc.

Bingham Plastic fluids: Fluids that behave as a solid until a minimum yield stress, 7,, is reached
and flow after crossing this stress are known as Ideal plastic or Bingham plastic fluids. The
corresponding shear stress modelist = T, + “o’_y'

Example: Clay suspensions, drilling muds, sewage sludge, creams, toothpaste, etc.
Thixotropic fluid: Apparent viscosity (n) for thixotropic fluids decreases with time under a
constant applied shear stress. These are time dependent fluids.

Example: Paints, printer inks, etc.

MRDE ERSYH www.madeeasypublications.org Theory with | &g
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5. Rheopectic fluid: Apparent viscosity (1) for rheopectic fluids increases with time under constant
shear stress. These are time dependent fluids.

Example: Gypsum pastes.

—.— *

Viscoelastic fluids: Fluids which after some deformation partially return to their
original shape when the applied stress is released are called viscoelastic fluids.
Example, polymerised fluid with drag reduction features.

Rheology: It is the branch of science which deals with the studies of different
types of fluid behaviours.

1]
0
A
4 / .
Example 1.2

of 120 cm/s occurring at

If the velocity profile of a fluid over a plate is parabolic with free stream velocity
20 cm from the plate, calculate the velocity gradients and shear stress at a

distance of 0, 10 and 20 cm from the plate. Take the viscosity of the fluid as 8.5 poise.

Solution:
Given:

Distance of surface from plate = 20 cm

Velocity at surface,

Viscosity,

y

U= 120 cm/sec

U= 120cm/s

20 cm

uw = 85 poise = 85 Ns/m? = 0.85Ns/m? P u
10 Vertex  Velocity Profile

The velocity profile is given as parabolic. Hence equation of velocity profile is

u= af+by+c (1)

where a, b and ¢ are constants. Their values are determined from boundary conditions as:
(@ aty=0,u=0
(o) aty=20cm, u=120cm/s

(c) aty=20cm,

u
o’_y =0
Boundary condition (a) on substitution in equation (i), gives
c=0

Boundary condition (b) on substitution in equation (i) gives
120 = a(20)? + b(20) = 400a + 20b ()

Boundary condition (¢) on substitution in equation (i) gives
au
a = 2ay+ b (i)

or

O0=2xax20+b=40a+ b

Solving equations (ii) and (iii) foraand b
From equation (iii), b=-40a
Substituting this value in equation (ii), we get

120 = 400 a + 20 x (-40a)
= 400a-800a = —-400a

L_ 120 _ 3 _ ..
-400 10

b = (~40) x (-0.3) = 12.0

www.madeeasypublications.org Solve;{ hﬁiﬁﬂfi CE
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Substituting the values of a, b and ¢ in equation (i)

u=-03y2+12y

Velocity Gradient

W 03x2y+ 12 =06y + 12
gy = 03x2y+12=-06y

au
at y = 0, Velocity gradient, (—j =-06x0+ 12 =12 persec
y=0

dy

au
aty=10cm, (d_j =-06x10+12=-6+ 12 = 6 per sec
Y y=10
au
aty=20cm, — =-06x20+12=-12+12=0
dy y=20
Shear Stresses
au
Shear stress is given b = U—
g y T Mdy
(i) Shear stress at y = 0, T= (%) =0.85x 12.0 = 10.2 N/m?
ay ),
y=0
N adu
(i) Shear stress at y = 10, T =Wl — =0.85x6.0=5.1 N/m?
ay ),
y=10
au
(i) Shear stress at y = 20, T= u(—) =085x0=0
ay) 20

Example 1.3

Two large plane surfaces are 2.4 cm apart. The space between the surfaces

is filled with glycerin. What force is required to drag a very thin plate of surface area 0.5 square metre
between the two large plane surfaces at a speed of 0.6 m/s, if:
(i) the thin plate is in the middle of the two plane surfaces, and
(ii) the thin plate is at a distance of 0.8 cm from one of the plane surfaces?
Take the dynamic viscosity of glycerin = 8.10 x 10-1 Ns/m2. Assume linear velocity distribution
in transverse direction.

Solution :
Given:
Distance between two large surfaces = 2.4 cm £
Area of thin plate, A = 05m? £ .
Velocity of thin plate, u = 0.6 m/s i T
Viscosity of glycerin, u = 8.10 x 107" Ns/m? §
Case-l: When the thin plate is in the middle of =
the two plane surfaces. Fig: Case-
MRDE ERSYH www.madeeasypublications.org Theory with | &
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Let, F, = Shear force on the upper side of the thin plate
F, = Shear force on the lower side of the thin plate
F = Total force required to drag the plate

Then, F=F+F,
The shear stress (t,) on the upper side of the thin plate is given by equation,

%
T1=Mdy1

Relative velocity between thin plate and upper large plane surface = 0.6 m/s.
Distance between thin plate and upper large plane surface

1.2cm =0.012 m (plate is a thin one and hence thickness of plate is neglected)
Assuming linear velocity distribution between large plane surfaces and thin plate.

where, au
ay

7, = 8.10x107'x 06 ) = 40.5 N/m?
0.012
Now shear force, F, = Shear stress x Area

T, X A=40.5x05=2025N
Similarly shear stress (t,) on the lower side of the thin plate is given by

au 0.6
- u| 2 —s10x 10 = 40.5 N/m?
E “(dyL e (0.012) m

Shear force, F, T,Xx A=405x05=2025N
Total force, F=F +F,=2025+2025=405N

Case II: When the thin plate is at a distance of 0.8 cm from one of the plane surfaces.
Let the thin plate is at a distance 0.8 cm from the lower plane surface.
Then distance of the plate from the upper plane surface
=24-08=16cm=0.016m (Neglecting thickness of the plate)
The shear force on the upper side of the thin plate,
F, = Shear stress x Area=1,x A

au
_ ul=—| xA §
- M(d)/l c é;
o ~
<
= 8.10x10"1 x( 0.6 jx0.5= 519N O —_—
0.016 5
The shear force on the lower side of the thin plate, =
au Fig: Case-ll
F = T, X A = M(—) XA
2 2 O’y 5
= 8.10x107" X(L x0.5 =30.38 N
0.8/100
- Total force required = F, + F, = 15.19 + 30.38 = 45.57 N Ans.
1.6 SURFACE TENSION
e |thas been seen that a drop of blood forms a hump on horizontal glass. Similarly a drop of mercury
forms a near perfect sphere and can be rolled just like a steel ball over a smooth surface.
MRDE ERSY www.madeeasypublications.org Theory with | &
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In these observations, liquid droplets behave like small balloons filled with the liquid and surface
of the liquid acts like a stretched elastic membrane under tension. These pulling forces that
causes this tension acts parallel to the surface and is due to attractive forces between the
molecules of the liquid. The magnitude of this force per unit length is called surface tension (o)
and is expressed in unit N/m.

To visualize that how surface tension arise at interface,
consider the microscopic view of molecule on surface
and inside the liquid filled in a container. The attractive

force applied on the interior molecule by the /\\ Molecule
surrounding molecules balance each other because < fft :’— on surface
of symmetry. But for the molecule on the surface or at

interface between two different mediums, the attractive
forces are not symmetric. The attractive forces applied
by the air/gas molecule above are usually small. <~ ~_| Molecule
Therefore, there is a net attractive force acting on the N ;?,Z'?izuid
molecule at the surface of the liquid. These are

balanced by repulsive forces from the molecules below Fig: Surface tension

the surface that are trying to be compressed. Due to

this, liquid minimise its surface area.

This is the reason for the tendency of liquid droplets to attain a spherical shape which has the
minimum surface area for a given volume.

Surface tension is due to “cohesion” between the liquid particles.

Whenever a liquid is in contact with other liquids or gases, or solid surface, an interface develops
that acts like a stretched elastic membrane, creating surface tension.

There are two features to this stretched elastic membrane : the contact angle 6, and the magnitude
of the surface tension, o (N/m). Both of these, depend on both the type of liquid and the type of
solid surface ( or other liquid or gas) with which it shares an interface.

For example, the car’s surface will get wetted when water is applied 0 <90°

to the surface. If before applying water, waxing is done to the car’s d
surface and then water is applied, the car’s surface will not get wet. (a) Wetted surface
This is because of the change of the contact angle from being
smaller than 90°, to larger than 90°. The waxing has changed the
nature of the solid surface.

For liquids, surface tension decreases with increase in temperature.

Due to surface tension, pressure change occurs across a curved
interface.

Water
droplet __

s
/

0> 90°

(b) Non-wetted surface

Surface tension is also defined as work done per unit increase in . :
. _ . Fig: Surface tension effect
surface area. This work done is stored in the form of surface energy. on water droplets

Work done

Area
A liquid droplet takes spherical shape because surface area is minimum in spherical condition.
Therefore, the surface energy is minimum. Minimum surface energy leads to most stable state.
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e Forair-water interface, 6 = 0.073 N/m.
e For water glass interface, contact angle, 6=0 .

NOTE

e Forair-mercury interface, o = 0.44 N/m.

e Formercury glass interface, contact angle, 6 = 130°.

1.7  APPLICATIONS OF SURFACE TENSION

1.7.1  Droplet and Jet

(i

When a droplet is separated initially from the surface of the main body of liquid, then due to surface tension
there is a net inward force exerted over the entire surface of the droplet which causes the surface of the
droplet to contract from all the sides and results in increasing the internal pressure within the droplet.

The contraction of the droplet continues till the inward force due to surface tension is in balance with
the internal pressure and the droplet forms into sphere which is the shape for minimum surface area.
The internal pressure within a jet of liquid is also increased due to surface tension.

The internal pressure intensity within a droplet and a jet of liquid in excess of the outside pressure
intensity may be determined by the expressions derived below.

Pressure intensity inside a water droplet: Consider '
a spherical water droplet of radius r having internal

pressure intensity p in excess of the outside

pressure intensity. If the droplet is cut into two

halves, then the forces acting on one half will be

those due to :

(a) Pressure intensity (p) on the projected area (rr?). :

(b) Tensile force due to surface tension (o) acting (@) ()

around the circumference (2mr).
Fig: Surface Tension (o) and Internal

These two forces will be equal and opposite for Pressure (p) in a droplet

equilibrium and hence, we have,
p(nré)=c(2nr)

26 4o
o ]
e Above equation indicates that the internal pressure intensity increase with the
E decrease in the size of droplet.
(o) e |ncase of an air bubble in water, an interface is formed where air is inside and water
= is outside. Therefore it is same as water droplet.
26 40
WS Ta
(ii) Pressure intensity inside a soap bubble: A spherical soap bubble has A 5 T
two surfaces in contact with air, one inside and the other outside, each one , ‘l 5
of which contributes the same amount of tensile force due to surface tension. ‘ /] ’
Therefore, consider a hemispherical section of a soap bubble of radius r, l

the tensile force due to surface tension is equal to 2c(27nr). However, the Fig. Soap Bubble

www.madeeasypublications.org s°1ve§hﬁ?(2%§f3§

CE



Fluid Mechanics and

POSTAL Hydraulic Machines
MRDE ERSYH BOOK PACKAGE 2025 Fluid Properties 1 3

pressure force acting on the hemispherical section of the soap bubble is same as in the case of a
droplet and it is equal to p(rr?). Thus, equating these two forces for equilibrium, we have
p(nre) = 20 (2nr)
46 8o

or P=" "4

(iii) Pressure intensity inside a liquid jet: Consider a jet of
liquid of radius r, length / and having an internal pressure
intensity p in excess of outside pressure intensity. If the jet
is cut into two halves, then the forces acting on one half will
be those due to pressure intensity p on the projected area
(2rl) and the tensile force due to surface tension (o) acting
along the two sides (21). These two forces will be equal and Fig. Liquid Jet
opposite for equilibrium and hence we have,

p(2ri)

o(21)
o _ 20

rod

or P

NOTE: Some insects can land on water or even walk on water and small steel needle can float on
water. All these phenomenons are possible due to surface tension which balances the weight of these
objects.

Example 1.4 If the surface tension at the air-water interface is 0.073 N/m, estimate

the pressure difference between inside and outside of an air bubble of diameter 0.01 mm.

Solution:
An air bubble has only one surface.

20 2x0.073

- ——-— - = 2:
Hence Ap = 7 (O'O1jx1o—3 29200 N/m# = 29.2 kPa

2

1.7.2

Capillarity

e The phenomenon of rise or fall of a liquid in a small diameter tube inserted into a liquid is known as
capillary effect.

e The capillary effect depends upon both the cohesive forces (the forces between like molecules) and
adhesive forces (the forces between unlike molecules). Relative magnitude of these forces will determine
whether a liquid rises or falls in the tube.

e |f the adhesive forces are predominant, then the fluid tends to rise along the glass surface. For
example, the water molecules are more strongly attached to the glass molecules than they are to
other water molecules. Thus, water rise in the glass tube.

e |f the cohesive forces are predominant, then fluid tends to fall down along the glass surface. For
example, in case of mercury, due to predominant cohesive forces between its molecules, than they
are to glass molecules. Thus, mercury falls in the glass tube.

MRDE ERSYH
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Meniscus
NYA
—T Meniscus —
h>0 —_— J—
| h<0
Mercury N
Water
Fig. Capillary rise of water Fig. Capillary fall of Mercury

e This effect can also be expressed by saying that water wets the glass (by sticking to it) while
mercury does not. The strength of capillary effect is quantified by the contact angle which is defined
as the angle that the tangent to the liquid surface makes with the solid surface at the point of contact.
The surface tension force acts along the tangent line towards the solid surface.

e Aliquid is said to wet the surface when contact angle is less than 90° (6 < 90°) and not to wet the
surface when contact angle is more than 90° (6 > 90°).

e Surface tension force acts upward on a water in a glass tube, tending to pull the water up because
the contact angle of water with glass is nearly zero. As a result, water will rise in the tube until the
weight of the liquid in the tube is balanced by surface tension force. The contact angle of mercury
is 130° at glass interface. Therefore, surface tension will act downwards tending to fall the mercury

level in the glass tube.
N

(b) Non-Wetting fluid

(a) Wetting fluid
Fig. The contact angle for wetting and non-wetting fluids

e (Contact angle for Kerosene glass interface is 26° in air.

Expression for capillary rise or fall 0\@(\5};/0 <~ 2r>]

e Letthe level of liquid rises (or fall) by height, h -f Glass tube Glass tube
above (or below) the general liquid surface when h e L
a tube of radius ris inserted in a liquid having l
specific gravity ‘S’. By equilibrium condition, L
the weight of liquid column of height h(or the l
total internal pressure in the case of capillary <2 07| x4 7|
depression) must be balanced by the force, at G,ﬁ 2 5
surface of the liquid, due to surface tension o. Capillary rise Capillary fall

Fig. Capillarity in circular glass tubes
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Thus, Sy, mr2h = 2nrocos6

where, S = specific gravity of liquid, y,, = specific weight of water, 6 = contact angle

4cc0s0
h= Sy,d
. . 2
Since, the contact angle 6 for water and glass is equal to zero, h = y_cr
w

Assumptions in deriving above equations
(a) The meniscus of the curved liquid surface is a section of sphere.
(b) The liquid and tube surface are extremely clean.

e At 20°C and for water and glass, h = % m

REMEMBER where, d = diameter of tube in cm

e Withincrease in diameter of the tube, capillary rise decreases. For tube of diameter
more than 6 mm (radius > 3 mm), the capillary rise is negligible.

e Ifanannular tube, is immersed in a liquid, with outer radius r_ and inner radius r,, then capillary rise
is given by,
26co0sH

h= <2595 Y
(rO _ri)SYW

* If atube of radius ‘r" is inserted in mercury ( Specific gravity, S,) above which a liquid of specific
gravity, S, lies, then the capillary fall or depression his given by,

B 20 coso
(81— S,)

e [ftwo vertical plates ‘t’distance apart are held partially immersed in a liquid of surface tension ¢ and
specific gravity, S, then capillary rise or depression his given by,

B 20 cos0
S Syt

On reducing the height of capillary tube than the required height, the curvature of the liquid
surface inside the capillary tube rearranges itself. The contact angle increases for a wetting
interface and it decreases for a non-wetting interface.

Example 1.5 Derive an expression for the capillary rise between two vertical parallel
plates of width b partially immersed in a liquid of specific gravity S in terms of the distance t
between the plates, surface tension o and the contact angle 6 between the liquid and the plates.

MRDE ERSYH www.madeeasypublications.org 301veg hﬁiﬁinvﬁfg; CE





