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PREFACE

| have great pleasure in writing the book of core subject of Electronics Engineering viz.
Analog Circuits. A thorough understanding of the concepts developed in this book will prepare
the reader for more advanced course on the subject. The entire syllabus of Analog circuits is
presented in a simple and lucid style to make it comprehensible to an average student. This
text book has been written to meet the requirements for the students of B.E./B.Tech., ECE, EEE,
EIE.

In this book, | have tried to present the approach for competitive examinations like GATE,
IES and IAS. While teaching various categories of students, | understood that, it becomes very
easy for the students when things are explained by going through the fundamentals. So in the
present book, | tried to explain most of the topics through the basics. The Questions with
Solutions which already appeared in competitive examinations like GATE, IES are incorporated
in each chapter.

First, | would like to thank Mr. B. Singh (Chief Managing Director, MADE EASY Group) for
giving me the opportunity for writing the text book. His constructive suggestions and support
helped me a lot.

| express my heartfelt regard and gratitude to my teacher Dr. Srinivas Rao from whom |
have learnt the subject matter and which gave me inspiration to write this book.

| would also like to thank my H.O.D. Dr. Koteswara Rao and Principal Dr. Chinna Keshava
Rao (CBIT), Mr. Sudarshan Reddy (Associate Prof. in CBIT) who always inspire me in discipline

and hard work.

A special thanks to Mr. Sai Prasad who always, encourages me and gave me the first
opportunity to teach for competitive exams.

| express my sincere gratitude to my favorite Sir, Mr. Prem R. Chadha, friends M.V. Kiran
Kumar, Ramana Reddy, Krishna Kumar, Jagan, Krishna who always direct me in a right path.

Last but not the least, | also thank MADE EASY staff especially Vinod Kumar and
Md. Asim who put their sincere efforts to develop this book in time.

Any comments and suggestions for the improvement of this book will be thankfully
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CHAPTER 1

BJT BIASING &
THERMAL STABILIZATION

— About This Chapter

Operating point and DC load line.

+ AC load line.

. Stability factors S, S” and S”.
Various biasing circuits like fixed bias, collector to base bias and self bias.
Compensation circuits.

« Thermal run-away and conditions to maintain thermal stability.




BJT Biasing &
Thermal Stabilization

== 1.1 Operating Point and DC Load Line

e |tis clear that the transistor functions most linearly when it is constrained to operate in its
active region.

e To establish an operating point in this region it is necessary to provide appropriate direct
potentials and currents, using external sources.

e Once an operating point Q is established as shown below:

ANALYSIS

Assume common emitter amplifier circuit
In DC analysis,
(i) ac should be grounded

oV,
-~ 1
(ii) Rl asf—0,X, =
F{L
Capacitor is open. Vi
DC Equivalent Model , _ -
Figure 1.1 Common emitter amplifier
The output loop equation is given by
Voo = lc(Re+Re) + Ve Veo
o = Vee Ve
Rc+R. Rc+Re R, Re
Above equation represents like a straight liney = mx + C
When IC =0 (VCE)max: vCC
V,
V. =0, (I = _Vec
CE ( C)max RC + Re Ry .

1

Slope of DC load line = — ———
Rc +Re
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Output Characteristics of Common Emitter

|C r'
VCC y,
Rc +Re dc load line

Q(lg Vep)

v »Vee
cc

Fig. 1.2 DCload line and Q point

Q Point

“The intersection point between the dcload line and sample graph of | is called as operating point (or)
Quiescent point”.

DC Load Line

“The locus of all the Q points are concentrated on a line called as DC load line”.

When time varying excursions of the input signal (base current, for example) is applied to
common emitter amplifier, should cause an output signal (collector voltage or collector current)
of the same wave form.

If the output signal is not a faithful reproduction of the input signal, for example, if it is
clipped on one side. The operating point is unsatisfactory and should be relocated on the
collector characteristics.

The question now naturally arises as, how to choose the operating point.

Note that even if we are free to choose R, R, , R, and V., we may not operate the transistor
every where in the active region, because the various transistor ratings limit the range of
useful operation.

These ratings are

(i)(VCE)max (ii)(lc)max (iii) Pcmax

Capacitive Coupling

The capacitor C,, is to couple the input
signal to the transistor, as indicated in the
Figure (1.3).

In this diagram, one end of V; is at ground
potential, and the collector supply V., also
provides the biasing base current Ig.
Under quiescent conditions (no input
signal), C,, (called a blocking capacitor)
acts as an open circuit because the
reactance of a capacitor is infinite at zero
frequency (dc).

>

ER Output
S 'L signal, V,

Figure 1.3 Fixed bias circuit
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The capacitances C,, and C, are chosen large enough so that, at the lowest frequency of
excitation their reactances are small enough so that they can be considered to be short
circuits.

These coupling capacitors block dc voltages but freely pass signal voltages.

For example, the quiescent collector voltage does not appear at the output, but V_ is an
amplified replica of the input signal V,.

The ac output signal voltage may be applied to the input of another amplifier with out affecting
its bias, because of the blocking capacitor C,,.

DC and AC Load Lines

AC Load Line Analysis

Assume CE amplifier circuit:

AC Analysis
(i)

(if)

We noted that under dc
conditions C,, acts as an
open circuit. Hence the
quiescent collector current
and voltage are obtained by
drawing a static (dc) load
line.

If R, = o and if the input
signal (base current) is large
and symmetrical, we must
locate the operating point Q,
at the centre of the DC load
line. In this way the collector
voltage and current may vary
approximately symmetrically
around the quiescent values
Ve and | respectively.

Figure 1.4 DC and AC load line

If R, # o, however, a dynamic (ac) load line must be drawn.

Since, we have assumed that, at the signal frequency, C,, acts as a short circuit, the effective

load R/ at the collector is R in parallel with R, .

DC should be grounded.

1
Xc‘x? asf—oo . X, —0

i.e. capacitor acts as short circuit.
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AC Equivalent Model AC Load Line

A |C
o+ e K
/VR,L :RC ”RL L
M [ SR ER
W~ 2R 2R
Slope of ac load line is — i, 1
Rl Rc|R

¢ We observe that the input signal may swing a maximum of approximately 20 pA around Q,
because, if the base current decreases by more than 20 pA, the transistor is driven off.

e |falarger input swing is available, then in order to avoid cut-off during a part of the cycle.
The quiescent point must be located at a higher current.

* Suppose we locate Q, on the dc load line such that a line with a slope corresponding to the
ac resistance R; and drawn through Q, gives as large as output as possible with out too
much distortion.

¢ The choice of Q, allows an input peak current swing of about 30 pA.

[ ]

=s 1.2 Temperature Dependence on Transistor Parameters

The sources of instability of |, are essentially three:
(i) Reverse saturation current |,
(i) Base-emitter voltage Vge %
(iii) Currentgain p

lco Versus Temperature

“lop increases by 7%/°C rise in temperature”.

(or)

“lo doubles for every 10°C rise in temperature”.

i.e. as temperature increases, |, also increases.

® Vg Versus Temperature
“The base to emitter voltage Ve, which decreases
at the rate of 2.5 mV/°C for both Ge and Si
transistors.” Ve
T - -2.5mV/°C
i.e. as temperature increases, V. decreases.
e B Versus Temperature
(a) Pincreases with temperature

4

Ve

>

> Ve

Figure 1.5 DC load line and Q point
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(b) Replacement of Transistor

We see that the spacing of the
output characteristics will increase
or decrease as f increases or
decreases.

Though transistors are identified by
atype number, but even for a given
type, the characteristics differ from
piece to piece.

B is the ratio of collector current |
and base current . As for the same
base current, the collector current
of the transistor will vary from
replacement of the device.
Generally B is greater for the
replacement of transistor.

Stability Factor

MADE EASY

Ve
Figure 1.6 Common emitter characteristics

“It is a measure of variation in the operating point with respect to the temperature is called as stability
factor”.

|l is a function of I, Vge @and B. It is convenient to introduce the three partial derivatives of |
with respect to these variables. These derivatives are called the stability factors S, S"and S”.

S = ﬁ
dlco Vg, B constant
dl

S = =
9 Ve lco, B constant
al

S” — _C
B lco, Ve constant

Expression for Stability Factor
lo = Bl +(1+B) gy dwrtls

=B

ai+(1+[3)alﬂ

S

al, Al

_ BIC _ 1+B

“dlco 4_g%b
Pl

Conclusion:

e |deally the stability factor should be zero.
e  Practically stability factor should be very very less.
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== 1.4 Biasing Techniques

Biasing Techniques

'

Stabilization techniques Compensation techniques
A A S
Fixed bias Collector to Self bias  Through Through Through
base bias (or) diode Thermistor sensistor

voltage divider
bias
(or)

Emitter bias

(or)

Universal bias

=2 1.5 Fixed Bias Circuit

e Fromfixed bias circuit Figure (1.7) there is one resistance R, connected between base and

V.., through which the base current I flows.

¢ Tomake the Q point stable, base current I; should be constant.
The input loop is

Vee
Vee = g Ry + Vge T

lB _ VCC _VBE IB |C
Iqb

The voltage Vg across the forward biased emitter junction is
approximately 0.2 V for a germanium transistor and 0.7 V for a silicon I/
transistor in the active region.

. . v,
Since V. is usually much larger than V¢, we have BE _
| = VC_C L
B = =
I:{b

Figure 1.7 Fixed bias circuit
The current g is constant, and the network of Fig. (1.7) is called the
fixed bias circuit.

Disadvantages of fixed bias circuit

() o= B Is
l l—*Constant

Varies with temperature and transistor replacement
-~ If Igis constant also, B may vary with respect to temperature.
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(i) Stability factor S = 1+§|
1-psB
al,
In fixed bias lg = Vee
I:{b
dl
dw.rt | 98 -0
© Al
S=1+8
Assume B = 100
S = 1+100 =101

For Q point stability, stability factor S should be very less.

=2 1.6 Collector to Base Bias

e collector base bias circuit, shown in Figure (1.8) is an
improvement over the fixed bias method.

* We know that the biasing resistance R, is connected
between the collector and the base of the transistor.

® Letusassume the base currentas |5 and the collector current
as ls. So I flows through R, and (I + Ig) flows through
collector resistance R..

e |[f there is a change in B (due to characteristic variation
between transistors), or if there is any increase of ambient
temperature, collector current |, tends to increase.

* Finally, voltage drop I R increases. Since supply voltage
V¢ is constant, therefore V. decreases. Fig. 1.8 Collector to base bias

® Thisreduced V results in reduced current | through R,

ANALYSIS

Stabilization Concept
The input loop is given as

Ve (Ig + |c) Re + Ig Ry + Ve

| = VCC_lcRC_VBE (I)
B R, +Rc
The output loop is given as
Voo = o R+ Ve + 1, Re
Vee=lcRe = Vee + 1, Re (i)
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From equation (i) and (ii)

Output parameter

| — Input parameter ~ VCE + |B RC _ VBE
B
R, +Rc

e Since now the base current | is reduced, the collector currentis reduced. Thus, we find that
the collector-to-base biasing helps to partly compensate the changes which occurred originally
due to change in temperature or change in B.

Stability Factor S for Collector to Base Bias

We can determine the stability factors S for the circuit, by applying KVL to the input loop
Voo = (Ig+10) Rg + 15 Ry + Ve

dw.rtls
0= RC+%(Rb+RC)+O
dlc
dg _ _Re
dlc Ry + R
1+
al
S =1_g28
BBIC
So 1+[I3q
1 C
PR 4R,

It is an advantage compared to fixed bias circuit.
- This value is smaller than (1 + B), which was the stability factor S for fixed bias circuit. Thus
there is an improvement of stability in the collector-to base bias circuit.

Stabilization Against Change in 3

(1+PB)lo+Blg as B>>1

le

Pleo +Blg lB:%_ICO

le

Vee — Ve +(Ry +Rc)lco)
BRc +Rp

Voo = (g + 1R, + Ig Ry + Ve 1l = [3(

BR.>> R,
Vcc — VBE + (Rb + Rc )Ico
lc = =
The collector current has become independent of f and hence stabilized against change in 3.

(¢}

Drawback

Always, it is not possible to maintain the above condition (i.e. BR; >> R,). For example, if the
load resistance R is very small (as in a transformer coupled load), BR is in fact less than R,..
Thus for low values of R, the collector to base bias offers no improvement in stabilization as
compared to fixed bias circuit.
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== 1.7 Voltage Divider Bias or Self Bias

e In voltage divider bias circuit, the biasing is provided by
three resistors (R;, R, and R,). TVCC

* Theresistors R, and R, act as a potential divider giving a
fixed voltage to the base.

* Ifthe collector current | tends to increase (due to reasons . g g Re
like change in temperature or change in ). The emitter !
current I also increases and the voltage drop across R,
increases. The voltage difference between base and emitter
will reduce and hence base current I will reduce. Inturn, | ’—+|<
will reduce, trying to partly compensate for the original Ve
change. This type of biasing improves stability.
® In order to prevent the instability of gain due to R, it is Rzg gRe
advantages to bypass R, by a large value capacitor C..

This gives the advantage of self bias, while maintaining the
gain equal to that of a C.E. ampilifier without R.

Figure1.9 Voltage divider bias

Stability Factor S

To find the stability factor S, we first replace the voltage divider network R,, R, by its Thevenins
equivalent, as shown

Applying KVL around the base circuit loop

Vo= IgR + Vg + (I + 1) R Yoo
= BMp T Ve T \Ig T Ic/ Me
Differentiating w.r.t | and considering Vg to be independent of | ;, we get
Re
dl al
0= —2.R,+=2R,+R
FI TR 5 RiR
b_R1+R2
98 R, +R.) = -R. WW—
dlg —
I Vee _
alc Rb+Re R1+R2 —-- lel |
Btlc
S = 1+§I _ 1+2
1-B-8 1+p-—¢
dlc Ry +Re

From the above equation, we have

R - 1
i) If 2<<1 then Stability factor (S) = (14+B)- ———=1
(i) R, << en Stability factor (S) = (1+B) )

(i) Inthe designing of the biasing circuit, R value should be less.i.e. R, and R, will be taken
less values. If suppose R, is very less in the circuit, then the life time of the battery will be
less. So, we take R, > R, to overcome this disadvantage.

(ii) R, should be large. If it is consider, the negative feedback in the circuit increases which
reduces the voltage gain. So keep a shunt capacitor parallel to R,.
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Stability Factor S’

, 9l
= 9 Vae
From the input loop, Vo= IgR, + Vg + (Ig + o) Ry
Where ly = lc_(1+B),
BB
Vge = V+(Rb+Re)—(1EB) ICO_%'C
dw.rtVge
1 = O+O—Rb+(1+B)Re dlc
B 0 Ve
g - e -B
~ 9Vge Ry +(1+P)R,
Stability factor (8) = — B _ (1+B) (R +Re)
1+BL Ry +(1+B) Re
Ry +Re
S B 1
(1+B) Ry +Re)  Ro+(1+P)R,
S
Y S
B(1+B)(Rb+Re)
S
S =
Ry + Re

The lower the value of S, the lower is the value of S,

Stability Factor S”

ol
SI/ — _C
B lcoand Vigg constant
Vo = Va@e+Ry B _RorReleB) _\y Ro+Ru(1+B) |
B p B
B+1 BV +V, — Vge)
Wh V, = (Re+R)lpg-—— = .= 2YTY~ VBE/
o v = PRl g ¢~ R, +R.(1+P)
V4V, -V
BR, >> R, =

e
From the above equation, | is independent of .

COMPENSATION TECHNIQUES

e Up to now, we have seen the techniques of stabilizing the operating point of the transistor
which makes use of resistors in the biasing circuits.

e Butin compensation technique, we use temperature sensitive devices like diodes, thermistors,
sensistors etc.
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