Thoroughly Revised and Updated

## **Reasoning & Aptitude** *for* **GATE 2025** and **ESE Pre 2025**

Comprehensive Theory with Examples and Solved Questions of GATE and ESE Prelims

Also useful for

UPSC (CSAT), MBA Entrance, Wipro, SSC, Bank (PO), TCS , Railways, Infosys, various Public Sector Units and other Competitive Exams conducted by UPSC





#### MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016 E-mail: infomep@madeeasy.in Contact: 9021300500, 8860378007

Visit us at: www.madeeasypublications.org

#### Reasoning & Aptitude for GATE 2025 & ESE Prelims 2025

© Copyright, by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

1st Edition : 2008 2nd Edition : 2009 3rd Edition : 2010 4th Edition : 2011 5th Edition : 2011 6th Edition : 2012 7th Edition : 2013 8th Edition : 2014 9th Edition : 2015 10th Edition : 2016 11th Edition : 2017 12th Edition : 2018 13th Edition : 2019 14th Edition : 2020 15th Edition : 2021 16th Edition : 2022 17th Edition : 2023

18th Edition : 2024

MADE EASY PUBLICATIONS Pvt. Ltd has taken due care in collecting the data and providing the solutions, before publishing this book. Inspite of this, if any inaccuracy or printing error occurs then MADE EASY PUBLICATIONS Pvt.Ltd owesno responsibility. We will be grateful if you could point out any such error. Your suggestions will be appreciated.

### **Director's Message**



Engineering is one of the most chosen graduation fields, choosing to become an engineer after high school is usually a matter of interest but this eventually develops into "the purpose of being an engineer" and then a student thinks of cracking various competitive exams like ESE, GATE, PSUs exams, and other state engineering services exams. With the objective nature of these competitive exams and with increasing competition, it becomes necessary for the student to study and

practice every topic and also get acclimatize with the style of questions asked in the exam.

Studying engineering in university is one aspect but studying to crack different prestigious competitive exams requires altogether different strategies, crystal clear concepts and rigorous practice of previous years' questions. Every student can achieve great results through proper guidance and exam-oriented study material, and hence we have come up with this book covering all the previous years' questions. This book will help aspirants to develop an understanding of important and frequently asked areas in the exam and will also help in strengthening concepts. MADE EASY Team has put sincere efforts in framing accurate and detailed explanations for all the previous years' questions. The explanation provided for each question is not only question specific but it will also give insight on the concept as a whole which will beneficial for the student from the exam point of view to handle similar questions.

All the previous years' questions are segregated subject wise and further, they have been categorized topic-wise for easy learning and this certainly assists aspirants to solve all previous years' questions of a particular area in one place. I would like to acknowledge the efforts of the entire MADE EASY team who worked hard to solve previous years' questions with accuracy. I hope this book will stand up to the expectations of aspirants and my desire to serve the student community by providing the best study material will get accomplished.

**B. Singh (Ex. IES)** CMD, MADE EASY Group



Pages

SI.

Units

### Section-A: Arithmetic

| 1.1 | Number System                       | 1-17  |
|-----|-------------------------------------|-------|
| 1.2 | Percentages                         | 18-31 |
| 1.3 | Profit and Loss                     |       |
| 1.4 | Simple Interest & Compound Interest |       |
| 1.5 | Ratio and Proportion                | 53-61 |
| 1.6 | Averages, Mixture & Alligation      |       |
| 1.7 | Time & Work                         |       |
| 1.8 | Time, Speed & Distance              |       |

#### Section-B: Algebra & Geometry

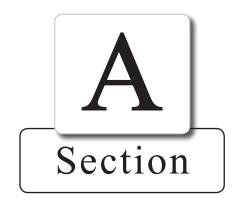
| 2.1 | Surds, Indices & Logarithms107-115 | ) |
|-----|------------------------------------|---|
| 2.2 | Progressions116-129                | ) |
| 2.3 | Permutations & Combinations130-141 |   |
| 2.4 | Probability142-152                 | ) |
| 2.5 | Set Theory153-158                  | } |

#### Section-C: Reasoning & Data Interpretation

| 3.1  | Blood Relationship                       |         |
|------|------------------------------------------|---------|
| 3.2  | Coding and Decoding                      |         |
| 3.3  | Cubes and Dice                           | 170-176 |
| 3.4  | Direction Sense Test                     |         |
| 3.5  | Line Graphs                              |         |
| 3.6  | Tables                                   |         |
| 3.7  | Bar Diagrams                             |         |
| 3.8  | Pie-Charts                               |         |
| 3.9  | Miscellaneous Puzzles                    | 212-221 |
| 3.10 | Logical Venn Diagrams                    |         |
| 3.11 | Analytical Reasoning                     |         |
| 3.12 | Figure Based Reasoning                   |         |
| 3.13 | Paper Cutting, Folding and Mirror Images |         |

#### Section-D: Previous GATE & ESE Solved Questions

| Previous GATE Solved Questions        | 256-413 |
|---------------------------------------|---------|
| Previous ESE Prelims Solved Questions | 414-436 |



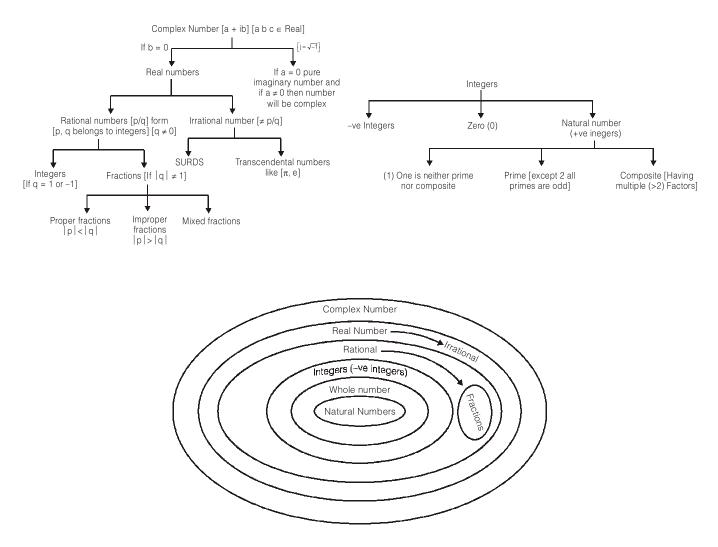
## Arithmetic



## **Number System**

In Quantitative Aptitude (QA), Number System is one of the modules which is of critical importance. We can consider this module as the back bone as well as basic foundation and building block for QA as well as for reasoning. Applications of concepts of numbers can be easily found in puzzles, reasoning based questions, number series and many more reasoning areas. This is why it is our suggestion to students to understand the concepts discussed in the module thoroughly alongwith understanding of applications.

#### **Classifications of Numbers**



Our main focus in this module of numbers in on **real number system**. However in context of imaginary numbers only following property is important.

#### **Imaginary Numbers**

| $i = \sqrt{-1}$    | $\Rightarrow$ | $i^{4K+1} \equiv \sqrt{-1} \equiv i$ |
|--------------------|---------------|--------------------------------------|
| i² = −1            | $\Rightarrow$ | $i^{4K\ +\ 2} \equiv -1 \equiv i^2$  |
| $i^3 = -i$         | $\Rightarrow$ | $i^{4K\ +\ 3} \equiv -i \equiv i^3$  |
| i <sup>4</sup> = 1 | $\Rightarrow$ | $i^{4K} \equiv 1 \equiv i^4$         |

#### Ex.1

What is the value of expression

 $\begin{array}{c} \frac{i^{12} + i^{13} + i^{14} + i^{15}}{i^{18} + i^{19} + i^{20} + i^{21}}?\\ (a) \quad i^2 \\ (c) \quad 1/i^2 \\ (d) \quad None \text{ of these} \\ (d) \end{array}$ 

Ans. (d)

 $\frac{i^{12} \left(1+i+i^2+i^3\right)}{i^{18} \left(1+i+i^2+i^3\right)}$ 

If we commit a mistake of cancelling out common terms in numerator and denominator options a, b, c all one correct hence my answer should be (d) but

Expression  $1 + i + i^2 + i^3$ = 1 + i + (-1) + (-i) = 0Hence expression in question leading to

undetermined form  $\begin{bmatrix} 0\\0 \end{bmatrix}$  hence correct answer is option (d).

#### **Real Number System**

Entire real numbers group of rational and irrational numbers combined forms the set of real number, which is represented by symbol  $\rightarrow$  R. All real numbers can be represented as points on a real number line.



#### **Rational Number**

All the numbers in p/q (q  $\neq$  0) form are rational numbers [p, q are integers]. Set of rational number is represented by  $\rightarrow$  Q.

Rational Numbers have following forms of representations.

(a) Terminating decimal forms for example 0.125

$$\Rightarrow$$
 0.125 =  $\frac{125}{1000}$   $\Rightarrow$  Rational

(i) For example  

$$Q = 0.37373737 \dots$$
  
 $100 Q = 37.373737 \dots$   
 $99Q = 37 \Rightarrow Q = 37/99 \Rightarrow rational$   
(ii) For example  
 $Q = 0.37292929 \dots$   
 $100Q = 37.292929 \dots$   
 $10000Q = 3729.292929 \dots$   
 $9900Q = (3729 - 37)$ 

$$Q = \left(\frac{3729 - 37}{9900}\right)$$
$$= \frac{p}{q} \text{ form} \Rightarrow \text{rational}$$

#### Fraction

All rational numbers in which  $|q| \neq 1$  comprise the set of fractions.

#### **Proper Fraction**

If |p| < |q|

then fraction is proper fraction. Value of proper fraction is always in between (-1 to +1) i.e., [-1 < p/q < 1]

#### **Improper Fraction**

|f|p| > |q|

than fraction is improper fraction. Value of improper fraction is < -1 or > 1.

#### **Mixed Fraction**

Just a modified form of improper fraction.

Eg. 
$$\frac{13}{4} \Rightarrow 3\frac{1}{4}$$
  
Improper fraction equivalent mixed fraction

#### Integers

The set of all rational numbers in p/q form [|q| = 1]is called as integers. It is denoted by  $I = \{ \dots -3, -2, -1, 0, 1, 2, 3, \dots \}$ It includes.

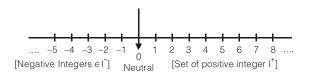
#### **Negative Integers**

I<sup>-</sup> = {... −7, −6, −5, −4, −3, −2, −1}

#### **Positive Integers**

 $I^{+} = \{1, 2, 3 \dots \}$ 

**Note:** Status of 0 (zero) is neutral neither positive nor negative.



#### Natural Numbers

All counting numbers or set of positive integers is considered as set of natural numbers. It denoted by set [N or  $I^+$ ]

 $N = \{1, \, 2, \, 3, \, 4, \, \ldots \}$ 

#### Whole Number

Set of all nonnegative integers are considered as whole number; it is denoted by set  $W = \{0, 1, 2, 3, 4 \dots\}$ 

**Note:** If terms "numbers" is used without any qualifier than it means natural number henceforth.

#### Even Numbers & Odd Numbers

#### 1. Even Numbers

All numbers divisible by 2 are considered as even numbers.

**Note:** Property evenness is applicable in entire integral number line. Hence [-2, -4, -6, ....] are even integers but they are not even numbers.

#### 2. Odd Number

All numbers not divisible by 2 are odd. [1, 3, 5, 7, ....] are odd numbers. [..................] are odd integers.

#### Properties of numbers based on even & odd

Even + Even = Even Odd + Odd = Even Odd + Odd + Odd = Odd Odd  $\times$  Odd = Odd Odd  $\times$  Even = Even Even  $\times$  Even = Even (Even)<sup>Odd</sup>  $\Rightarrow$  Even (Odd)<sup>Even</sup>  $\Rightarrow$  Odd (Even)<sup>Odd</sup>  $\Rightarrow$  Even (Odd)<sup>Odd</sup>  $\Rightarrow$  Odd

These properties can be used extensively to find out alternative method to get answers quickly with the help of options. Here are few examples.

#### Ex. 1

There are two, 2-digit numbers ab and cd, ba is the another two digit number prepared by reversing the digits of ab, if  $ab \times cd = 493$ ,  $ba \times cd = 2059$ , what is value 'g' sum of (ab + cd) = ?

(a) 43 (b) 45

(c) 47 (d) 46

#### Ans: (d)

Value 'g' =  $ab \times cd$  is odd.

It means ab and cd both are odd.

Hence there sum must be even, only one option is there which is even. Hence answer is option d.

#### Ex. 2

I have multiple gift vouchers of value, Rs. 101, 107, 111, 121, 131, 141, 151, 171. I have to pick exactly 10 vouchers to make payment of Rs. 1121. In how many ways I can do that?

- (a) one (b) two
- (c) more than two (d) none of these

#### Ans. (d)

Reasoning is very simple, if I'll add 10 odd numbers their sum will be always even. Hence there is no way to accomplish this.

#### Prime Number & Composite Numbers

#### **Prime Numbers**

Number which are perfectly divisible either by 1 or by itself only are called prime numbers. 25 prime number are there which are less than 100. 2 is the only even prime number. All prime numbers greater than 5 can be expressed as  $(6K \pm 1)$  ( $K \in N$ ) form but all the numbers in form of  $(6K \pm 1)$  form are not necessarily prime.

#### **Composite Numbers**

All the numbers which can be factorized into multiple prime numbers are called composite number. Number (1) one is neither prime nor composite.

## How to check whether given number is prime or not?

- 1. Take the square root of number
- 2. Consider the prime numbers, starting from 2 till the number. Take all prime numbers upto this square root value or nearest higher integer.

3. If number is divisible by any of these prime numbers, then number is composite.

#### Learn it by example:

Suppose we want to check, is 629 prime or not? Square root of 627 is just more than 25. Then prime no. till 25 are 2, 3, 7, 5, 11, 13, 17, 19, 23, 29. 629 is not divisible by 2, 3, 5, 7, 11, 13 but is divisible by 17.

Hence it is not prime number

#### One more example: 179

Square root of 179 is more than 13. Hence we need to check divisibility of 179 against 2, 3, 5, 7, 11, 13, 17

179 is not divisible by either of these hence it is a prime number.

#### **Test of Divisibility**

#### 1. Divisibility by 2

A number is divisible by 2 if the unit digit is zero or divisible by 2.

Eg.: 22, 42, 84, 3872 etc.

#### 2. Divisibility by 3

A number is divisible by 3 if the sum of digit in the number is divisible by 3.

Eg.: 2553

Here 2 + 5 + 5 + 3 = 15, which is divisible by 3 hence 2553 is divisible by 3.

#### 3. Divisibility by 4

A number is divisible by 4 if its last two digit are divisible by 4.

Eg.: 2652, here 52 is divisible by 4 so 2652 is divisible by 4.

Eg.: 3772, 584, 904 etc.

#### 4. Divisibility by 5

A number is divisible by 5 if the units digit in number is 0 or 5.

Eg.: 50, 505, 405 etc.

#### 5. Divisibility by 6

A number is divisible by 6 if the number is even and sum of digits is divisible by 3.

Eg.: 4536 is an even number also sum of digit 4 + 5 + 3 + 6 = 18 is divisible by 3. Eg: 72, 8448, 3972 etc.

#### 6. Divisibility by 8

A number is divisible by 8 if last three digit of it is divisible by 8.

Eg.: 47472 here 472 is divisible by 8 hence this number 47472 is divisible by 8.

#### 7. Divisibility by 9

A number is divisible by 9 if the sum of its digit is divisible by 9.

Eg.: 108936 here 1+0+8+9+3+6 is 27 which is divisible by 9 and hence 108936 is divisible by 9.

#### 8. Divisibility by 10

A number is divisible by 10 if its unit digit is 0.

Eg.: 90, 900, 740, 34920 etc.

#### 9. Divisibility by 11

A number is divisible by 11 if the difference of sum of digit at odd places and sum of digit at even places is either 0 or divisible by 11.

Eg.: 1331, the sum of digits at odd place is 1+3 and sum of digit at even places is 3+1 and their difference is 4 - 4 = 0. so 1331 is divisible by 11.

#### HCF and LCM of Numbers

#### H.C.F.

(Highest Common Factor) of two or more number is the greatest number that divides each one of them exactly. For example 8 is the highest common factor of 16 and 40.

HCF is also called greatest common divisior (G.C.D.)

#### L.C.M.

(Least Common Multiple) of two or more number is the least or a lowest number which is exactly divisible by each of them.

For example LCM of 8 and 12 is 24, because it is the first number which is multiple of both 8 and 12.

#### LCM and HCF of Fractions

Fractions are written in form of  $\frac{\text{Numerator}}{\text{Denominator}}$ . Where

denominator is not equal to zero.

H.C.F of Fraction = 
$$\frac{(H.C.F. of Numerators)}{(LCM of Denominators)}$$
  
L.C.M of Fraction =  $\frac{(LCM of Numerators)}{(HCF of Denominators)}$ 

All Fractions have to be in their simplest form:

**Example:** Find HCF & LCM of 
$$\frac{1}{2}$$
,  $\frac{2}{3}$  and  $\frac{3}{7}$ 

H.C.F. = 
$$\frac{\text{H.C.F. of } (1,2,3)}{\text{L.C.M} (2, 3, 7)} = \frac{1}{42}$$
  
L.C.M =  $\frac{\text{L.C.M of } (1,2,3)}{\text{H.C.F. of } (2, 3, 7)} = \frac{6}{1} = 6$ 

Important Algebraic Formulae

1. 
$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$
  
2.  $(a-b)^{2} = a^{2} - 2ab + b^{2}$   
3.  $(a-b)(a+b) = a^{2} - b^{2}$   
4.  $(a+b)^{2} + (a-b)^{2} = 2(a^{2} + b^{2})$   
5.  $(a+b)^{2} - (a-b)^{2} = 4ab$   
6.  $(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$   
 $= a^{3} + b^{3} + 3ab(a+b)$   
7.  $(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$   
 $= a^{3} - b^{3} - 3ab(a-b)$   
8.  $a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$   
9.  $a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$   
10.  $\frac{a^{3} + b^{3} + c^{3} - 3abc}{a^{2} + b^{2} + c^{2} - ab - bc - ca} = (a+b+c)$   
11.  $a^{4} - b^{4} = (a^{2})^{2} - (b^{2})^{2} = (a^{2} + b^{2})(a^{2} - b^{2})$   
 $= (a^{2} + b^{2})(a+b)(a-b)$ 

#### [Condition of Divisibility for Algebric Function

 a<sup>n</sup> + b<sup>n</sup> is exactly divisible by a+b only when n is odd

**Ex.:**  $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$  is divisible by a+b, also  $a^5 + b^5$  is divisible by a+b

 a<sup>n</sup> + b<sup>n</sup> is never divisible by a-b (whether n is odd or even)

**Ex.:**  $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$  is not divisible by (a-b)

- $a^7 + b^7$  is also not divisible by (a b)
- a<sup>n</sup> b<sup>n</sup> is always divisible by (a b) (whether n is odd or even)

**Ex.:**  $a^9 - b^9$  is exactly divisible by (a-b) also  $a^{12}-b^{12}$  is also exactly divisible by (a-b).

4.  $a^n - b^n$  is divisible by a + b only when 'n' is even natural number. Ex. :  $a^4 - b^4 = (a^2 - b^2)(a^2 + b^2) = (a - b)(a + b)$ 

 $(a^2 + b^2)$ . Hence  $a^4 - b^4$  is always divisible by (a + b) but  $a^3 - b^3$  will not be.]

#### Factors of Composite Number

Composite numbers are the numbers which can be factorised into prime factors, or simply we can say that composite number are those numbers which are not prime.

For eg.: 8 is a composite number since it can be factorised into

$$8 = 2 \times 2 \times 2$$
  
Similarly 9 is also a composite number, i e  
 $9 = 3 \times 3$ 

 $Composite number = P_1^{\lambda_1} \times P_2^{\lambda_2} \times P_3^{\lambda_3} \dots P_n^{\lambda_n} here, P_1, P_2,$ 

 $P_3 \dots P_n$  are distinct prime numbers and  $\lambda_1$ ,  $\lambda_2$ ,

 $\dots \lambda_n$  are their respective powers.

Factors of composite number =  $(\lambda_1 + 1). (\lambda_2 + 1)...(\lambda_n + 1)$ For eg.:  $18 = 2 \times 3 \times 3 = 2^1 \times 3^2$ Factors of  $18 = (1 + 1) \times (2 + 1) = 2 \times 3 = 6$ Clearly it contains six factors 1, 2, 3, 6, 9 and 18 Factors of other Composite numbers  $6 = 2^1 \times 3^1$ Factors =  $(1 + 1) \times (1 + 1) = 4 = 1, 2, 3$  and 6  $72 = 2 \times 2 \times 2 \times 3 \times 3 = 2^3 \times 3^2$ Factors =  $(3 + 1) \times (2 + 1) = 12$ 

**Ex.1** Find the factors of composite number 360

Sol.:  $360 = 2 \times 2 \times 2 \times 3 \times 3 \times 5$ =  $2^3 \times 3^2 \times 5^1$ Factors = (3 + 1) (2 + 1) (1 + 1) = 24.

#### 

#### **Counting Number of Trailing Zeros**

Sometimes we come across problems in which we have to count number of zeros at the end of factorial of any number. For example

Number of zero at the end of 10!

 $10! = 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$ 

Here basically we have to count number of fives, because multiplication of five by any even number will result in 0 at the end of final product. In 10! we have 2 fives thus total number of zeros are 2.

#### Short Cut:

Counting number of zeros at the end of n!

Value will be  $\frac{n}{5} + \frac{n}{5^2} + \frac{n}{5^3} + \frac{n}{5^4} \dots$ 

The integral value of this sum will be the total number of zeros.

Ex. 1 Number of zeros at the end of 100!

Sol.: 
$$\frac{100}{5} + \frac{100}{5^2} + \frac{100}{5^3}$$

integral value will be 20 + 4 = 24 zeros

- Ex.2 Number of zeros at the end of 126!
- Sol.:  $\frac{126}{5} + \frac{126}{5^2} + \frac{126}{5^3} + \frac{126}{5^4}$

integral value will be 25 + 5 + 1 = 31 zeros.

#### 

#### Cyclicity

Cyclicity of a number is used mainly for the calculation of unit digits.

1. Cyclicity of 1.

In 1<sup>n</sup>, unit digit will always be 1.

- 2. Cyclicity of 2.
  - $2^1 = 2$
  - $2^2 = 4$
  - $2^3 = 8$
  - $2^4 = 16$
  - $2^5 = 32$
  - $2^6 = 64$
  - $2^7 = 128$
  - $2^8 = 256$

After every four intervals it repeats so cycle of 2 is 2, 4, 8, 6.

- **Ex.1** Unit digit of 2<sup>323</sup>
- Sol.: Here 2, 4, 8, 6 will repeat after every four interval till 320 next digit will be 2, 4, 8. So unit digit of 2<sup>323</sup> will be 8.
- **Ex.2** Find unit digit of  $12^{12} \times 22^{22}$
- Sol.: Unit digit of  $12^{12}$  will be 6 and  $22^{22}$  will be 4. So unit digit of  $12^{12} \times 22^{22}$  will be

$$6 \times 4 = 2$$
 4; 4 Ans.

#### 3. Cyclicity of 3.

- $3^{1} = 3$   $3^{2} = 9$   $3^{3} = 27$   $3^{4} = 81$  $3^{5} = 243$
- $3^6 = 729$
- $3^7 = 2187$
- 3<sup>8</sup> = 6561

After every four intervals 3,9, 7 and 1 are repeated. So cycle of 3 is 3, 9, 7, 1.

- **Ex.1** Find unit digit of 133<sup>133</sup>.
- **Sol.:** Cycle of 3 is 3, 9, 7, 1 which repeats after every four intervals till 133<sup>132</sup>. So next unit digit will be 3.

#### 4. Cyclicity of 4.

- $4^1 = 4$
- $4^2 = 16$
- $4^3 = 64$
- $4^4 = 256$

Cycle is 4, 6, i.e.

Unit digit of 4<sup>n</sup> depends on value of n.

If n is odd unit digit is 4 and if n is even digit is 6.

- **Ex.1** Find unit digit of  $4^{1024}$ .
- **Sol.:** Since 1024 is even number unit digit will be 6.
- **Ex.2** Find unit digit of  $133^{63} \times 4^{49}$ .
- **Sol.:** Unit digit of  $133^{63}$  is 7 and unit digit of  $4^{49}$  is 4 so unit digit of  $133^{63} \times 4^{49}$  will be 7  $\times$  4 = 28 i.e. 8.
- 5. Cyclicity of 5.
  - $5^{1} = 5$   $5^{2} = 25$   $5^{3} = 125$   $5^{4} = 625$ Unit digit will always be 5.
- 6. Cyclicity of 6.

 $6^{1} = 6$   $6^{2} = 36$   $6^{3} = 216$   $6^{4} = 1296$ Unit digit will always be 6.

- **Ex.1** Find unit digit of  $4^{69} \times 6^5$
- **Sol.:** Unit digit of  $4^{69}$  is 4 and unit digit of  $6^5$  is 6 so unit digit of  $4^{69} \times 6^5$  will be  $4 \times 6 = 24$  i.e. 4.

#### 7. Cyclicity of 7.

#### $7^1 = 7$ $7^2 = 49$

 $7^{3} = 343$   $7^{4} = 2401$   $7^{5} = 16807$   $7^{6} = 117649$   $7^{7} = 823543$  $7^{8} = 5764801$ 

Cycle of 7 is 7, 9, 3, 1

- **Ex.1** Find unit digit of  $17^{17} \times 27^{27}$
- Sol.: Unit digit of  $17^{17}$  is 7 and unit digit of  $27^{27}$  is 3. So unit digit of  $17^{17} \times 27^{27}$  will be 7 × 3 = 21 i.e. 1.
- 8. Cyclicity of 8.
  - 8<sup>1</sup> = 8
  - $8^2 = 64$
  - $8^3 = 512$
  - 8<sup>4</sup> = 4096
  - $8^5 = 32768$

So cycle of 8 is 8, 4, 2, 6.

- **Ex. 1** Find unit digit of  $18^{18} \times 28^{28} \times 288^{288}$ .
- **Sol.:** Unit digit of  $18^{18}$  is 4, unit digit of  $28^{28}$  is 6, unit digit of  $288^{288}$  is 6. So unit digit of  $18^{18} \times 28^{28} \times 288^{288}$  will be  $4 \times 6 \times 6 = 144$  i.e. 4.

9. Cyclicity of 9.

 $9^{1} = 9$ 

- $9^2 = 81$
- $9^3 = 729$
- $9^4 = 6561$
- Cycle of 9 is 9, 1.

In 9<sup>n</sup> unit digit will be 9 if n is odd and unit digit will be 1 if n is even.

Ex. 1 Find unit digit of

 $11^{11} + 12^{12} + 13^{13} + 14^{14} + 15^{15}$ 

Sol.: Unit digit of 
$$11^{11}$$
 is 1  
Unit digit of  $12^{12}$  is 6  
Unit digit of  $13^{13}$  is 3  
Unit digit of  $14^{14}$  is 6  
Unit digit of  $15^{15}$  is 5  
So unit digit of given sum will be  
 $1 + 6 + 3 + 6 + 5 = 21$  i.e. 1.

#### Remember

Cyclicity table 1 : 1 2 : 2, 4, 6, 8 3 : 3, 9, 7, 1 4 : 4, 6 5 : 5 6 : 6 7 : 7, 9, 3, 1 8 : 8, 4, 2, 6 9 : 9, 1 0 : 0

#### 

#### **Remainder Theorem**

Remainder of expression  $\frac{a \times b \times c}{n}$  [i.e.  $a \times b \times c$  when

divided by n] is equal to the remainder of expression

- $\frac{a_n \times b_n \times c_n}{n}$  [i.e.  $a_n \times b_n \times c_n$  when divided by n], where
  - $\boldsymbol{a}_n$  is remainder when a is divided by n,
  - $\boldsymbol{b}_n$  is remainder when  $\boldsymbol{b}$  is divided by n, and
  - $c_n$  is remainder when c is divided by n.
- **Ex.1** Find the remainder of  $15 \times 17 \times 19$  when divided by 7.
- **Sol.:** Remainder of expression  $\frac{15 \times 17 \times 19}{7}$  will be

equal to 
$$\frac{1 \times 3 \times 5}{7} = \frac{15}{7} = \frac{1}{7}$$

i.e. 1.

On dividing 15 by 7 we get 1 as remainder On dividing 17 by 7 we get 3 as remainder On dividing 19 by 7 we get 5 as remainder and combined remainder will be equal to remainder

#### 

#### **Polynomial Theorem**

This is very powerful theorem to find the remainder.

#### According to polynomial theorem.

$$(x + a)^{n} = x^{n} + {}^{n}C_{1} x^{n-1} + {}^{n}C_{2} x^{n-2} a^{2} + {}^{n}C_{3} x^{n-3} a^{3} \dots {}^{n}C_{n-1} x^{1} a^{n-1} + a^{n} \dots (1)$$
  
$$\therefore \frac{(x + a)^{n}}{x} = \frac{\begin{pmatrix} {}^{n}C_{0} x^{n} + {}^{n}C_{1} x^{n-1} a^{1} + {}^{n}C_{2} x^{n-2} a^{2} + \\ {}^{n}C_{3} x^{n-3} + \dots {}^{n}C_{n-1} x^{1} a^{n-1} + {}^{n}C_{n} a^{n} \end{pmatrix}}{x} \dots (2)$$

remainder of expression (2) will be equal to remainder of  $\frac{a^n}{x}$  because rest of the term contains x are completely divisible by x.

**Ex.1** Find the remainder of 
$$\frac{9^{99}}{8}$$
.

Sol.: 
$$\frac{9^{99}}{8} = \frac{(8+1)^{99}}{8}$$

According to polynomial theorem remainder will be equal to remainder of the expression  $\frac{1^{99}}{8}$  which is equal to 1.

**Ex.2** Find remainder of 
$$\frac{5^{100}}{7}$$

Sol.:

$$\frac{5^{100}}{7} = \left[\frac{3 \times 7 + 4}{7}\right]^{30} \Rightarrow \frac{(4)^{50}}{7}$$
$$2^{100} = (2^3)^{33} \times 2 = (7+1)^{33} \times 2$$

$$\Rightarrow \frac{2^{100}}{7} \Rightarrow \frac{(2^3)^{33} \times 2}{7} \Rightarrow \frac{(7+1)^{33}}{7} \times 2 \Rightarrow \frac{1 \times 2}{7}$$
$$\Rightarrow \text{Remainder is 2.}$$

#### More on Remainders

#### Case-I

On dividing a number by a, b & c if we get a-k, b-k and c-k as remainder respectively then that number will be

#### n × LCM of [a, b, c]-k.

**For ex (I):** On dividing a number by 4, 5 & 6 we get 3, 4, & 5 as remainder. Find the number.

Sol.:

|                         | 4,      | 5,       | 6        |
|-------------------------|---------|----------|----------|
| Remainder               | З,      | 4,       | 5,       |
| which is equal to (     | 4 – 1), | (5 – 1), | (6 – 1), |
| so that number will be: |         |          |          |

 $n \times LCM \text{ of } (4, 5, 6) - 1, = 60n - 1$ If n = 1, 60 - 1 = 59 is smallest such natural number.

**Note:** n such numbers are possible. Here we have taken n as 1. Other numbers are 119, 179, 239, etc. Where value of n is 2, 3, & 4 respectively.

**Ex.1** On dividing a number by 5, 6 and 7 we get 3, 4 and 5 as remainder. Find the number.

Sol.:

5, 6, 7 Remainder 3, 4, 5 which is equal to (5-2), (6-2), (7-2)that number will be:  $n \times LCM$  of (5, 6, 7) - 2 = 210 - 2 = 208.

Note: Here we have taken value of n as 1.

**Ex.2** On dividing a number by 4, 5 and 6 we get 2, 3 and 4 as remainder find highest possible three digit such number.

#### Sol.:

 $\begin{array}{ccccccc} 4, & 5, & 6\\ \mbox{Remainder} & 2, & 3, & 4\\ \mbox{which is equal to } (4-2), & (5-2), (6-2), & \mbox{that}\\ \mbox{number will be:}\\ \mbox{n $\times$ LCM of [4, 5, 6]$-2 = $n$ $\times$ 60-2$}\\ \mbox{When $n = 1$ we get 58.$ Highest possible three}\\ \mbox{digit such number will be 958.} \end{array}$ 

- **Ex.3** On dividing a number by 5, 6 and 7 we get 3, 4 and 5 as remainder. Find highest possible three digit such number.
- Sol.:

5, 6, 7 Remainder 3, 4, 5 which is equal to (5-2), (6-2), (7 - 2) that number will be: n \* LCM (5, 6, 7)-2= n × 210 - 2 Highest possible three digit number will be 838.

#### Case-II

On dividing a number a, b and c if we get k as remainder always, then that number will be (n - 1) LCM of (a, b, c) + k.

- **Ex.1** On dividing a number by 5, 6 and 7 if we get 2 as remainder always, find that number
- Sol.: That number will be  $(n - 1) \times LCM$  of [5, 6, 7] + 2  $\Rightarrow 2$  is such smallest number next number will be = 210 + 2 = 212

#### Case-III

If a number after adding k is exactly divisible by a , b and c then that number will be.

 $n \times LCM$  (a, b, c) – k

**Ex.1** Find a number which after adding 7 is divisible by 10, 11 and 12.

**Sol.:** That number will be n × LCM of [10, 11, 12] – 7 if n = 1 then 660 – 7 = 653 Ans.

#### 

#### **Squares of Numbers**

Squares of numbers are frequently used for calculations on various types of problems. It is advisable to remember square of at least first thirty numbers.

| $1^2 = 1$    | $11^2 = 121$          |
|--------------|-----------------------|
| $2^2 = 4$    | $12^2 = 144$          |
| $3^2 = 9$    | $13^2 = 169$          |
| $4^2 = 16$   | $14^2 = 196$          |
| $5^2 = 25$   | $15^2 = 225$          |
| $6^2 = 36$   | $16^2 = 256$          |
| $7^2 = 49$   | $17^2 = 289$          |
| $8^2 = 64$   | $18^2 = 324$          |
| $9^2 = 81$   | 19 <sup>2</sup> = 361 |
| $10^2 = 100$ | $20^2 = 400$          |
|              |                       |

From following table we come to know that square of a number always ends with 0, 1, 4, 5, 6 & 9 as unit digit. Square of a number can never have 2, 3, 7 & 8 in its unit place.

On observing squares of numbers between 21 to 29 we get following pattern.

$$21^{2} = 4 \overline{41} 
22^{2} = 4 \overline{84} 
23^{2} = 5 \overline{29} 
24^{2} = 5 \overline{76} 
25^{2} = 6 \overline{25}$$

$$29^{2} = 8 \overline{41} 
28^{2} = 7 \overline{84} 
27^{2} = 7 \overline{29} 
26^{2} = 6 \overline{76}$$

Last two digits are common.

#### Observation

Square of two digit number having 5 in unit places can be calculated very easily

n5 here n may 1 to 9.

 $(n5)^2 = [n * (n + 1)]25$ 

Ex.1  $65^2 = ?$ Sol.:  $[6 \times (6 + 1)]25 = 4225$ Ex.2  $85^2 = ?$ Sol.:  $[8 \times (8 + 1)]25 \Rightarrow 7225$ Ex.3  $95^2 = ?$ 

**Sol.:**  $[9 \times (9 + 1)]25 \Rightarrow 9025$ 

#### **Base System**

The Number system is used to represent any number using a set of symbols (digits /letters). The base defines the number of symbols in particular base system. We generally work in Decimal system as there are 10 digits (0, 1, 2, .....9). Some others systems are;

Binary base system: 2 symbols: 0, 1 Octal base system: 8 symbols: 0,1,2,3,4,5,6,7

Hexadecimal system: 16 symbols:

Converting any number from any Base system to Decimal number system:

abcd.efg<sub>B</sub> = a × B<sup>3</sup> + b × B<sup>2</sup> + c × B<sup>1</sup> + d × B<sup>0</sup> + e × B<sup>-1</sup> + f × B<sup>-2</sup> + g × B<sup>-3</sup>

Example:

$$1234.56_8 = 1 \times 8^3 + 2 \times 8^2 + 3 \times 8^1 + 4 \times 8^0$$
  
+ 5 \times 8^{-1} + 6 \times 8^{-2}  
= 512 + 128 + 24 + 4 + 0.625 + 0.093750  
= 668 718750

## Converting any number from Decimal to other Base system:

Divide the number by base and get the first remainder  $r_1$  and Quotient  $q_1$ .

Now divided  $q_1$  by base and get remainder  $r_2$  and Quotient  $q_2$ .

Repeat the following process till we get the quotient  $\boldsymbol{q}_n=0.$ 

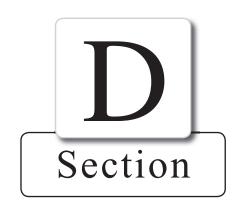
Now the decimal number in base b is  $r_n r_{n-1} ... r_3 r_2 r_1.$ 

#### Example 1:

1.  $(149)_{10} = ()_7$ 

| 7 | 149 | Remainder |
|---|-----|-----------|
| 7 | 21  | 2         |
| 7 | 3   | 0         |
|   | 0   | 3         |

$$(149)_{10} = (302)_7$$



# Previous GATE & ESE Solved Questions

### Previous GATE Solved Questions (General Aptitude)

 25 persons are in a room. 15 of them play hockey, 17 of them play football and 10 of them play both hockey and football. Then the number of persons playing neither hockey nor football is

| (a) 2  | (b) 17 |  |
|--------|--------|--|
| (c) 13 | (d) 3  |  |
|        |        |  |

[2010, 1 Mark]

2. If 137 + 276 = 435 how much is 731 + 672?
(a) 534
(b) 1403
(c) 1623
(d) 1531

#### [2010, 2 Marks]

5 skilled workers can build a wall in 20 days;
8 semiskilled workers can build a wall in 25 days;
10 unskilled workers can build a wall in 30 days.
If a team has 2 skilled, 6 semiskilled and 5 unskilled workers, how long will it take to build the wall?

| (a) 20 days | (b) 18 days |
|-------------|-------------|
| (c) 16 days | (d) 15 days |
|             |             |

#### [2010, 2 Marks]

**4.** Given digits 2, 2, 3, 3, 3, 4, 4, 4, 4 how many distinct 4 digit numbers greater than 3000 can be formed?

| (a) 50 | (b) 51 |
|--------|--------|
| (c) 52 | (d) 54 |

#### [2010, 2 Marks]

- Hari (H), Gita (G), Irfan (I) and Saira (S) are siblings (i.e. brothers and sisters). All were born on 1<sup>st</sup> January. The age difference between any two successive siblings (that is born one after another) is less than 3 years. Given the following facts:
  - 1. Hari's age + Gita's age > Irfan's age + Saira's age.
  - 2. The age difference between Gita and Saira is 1 year. However, Gita is not the oldest and Saira is not the youngest.
  - 3. There are no twins.

In what order were they born (oldest first)?

- (a) HSIG (b) SGHI
- (c) IGSH (d) IHSG

#### [2010, 2 Marks]

- 6. If Log(P) = (1/2)Log(Q) = (1/3)Log(R), then which of the following options is TRUE?
  (a) P<sup>2</sup> = Q<sup>3</sup>R<sup>2</sup>
  (b) Q<sup>2</sup> = PR
  (c) Q<sup>2</sup> = R<sup>3</sup>P
  (d) R = P<sup>2</sup>Q<sup>2</sup>
  [CE, ME, CS 2011, 1 Mark (Set-1)]
- 7. A container originally contains 10 litres of pure spirit. From this container 1 litre of spirit is replaced with 1 litre of water. Subsequently, 1 litre of the mixture is again replaced with 1 litre of water and this processes is repeated one more time. How much spirit is now left in the container?
  (a) 7.58 litres
  (b) 7.84 litres
  (c) 7 litres
  (d) 7.29 litres

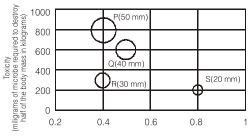
#### [CE, ME, CS 2011, 2 Marks (Set-1)]

8. The variable cost (V) of manufacturing a product varies according to the equation V = 4q, where q is the quantity produced. The fixed cost (F) of production of same product reduces with q according to the equation F = 100/q. How many units should be produced to minimize the total cost (V + F)?

|       | ` | , |       |
|-------|---|---|-------|
| (a) 5 |   |   | (b) 4 |
| (c) 7 |   |   | (d) 6 |

[CE, ME, CS 2011, 2 Marks (Set-1)]

**9.** P, Q, R and S are four types of dangerous microbes recently found in a human habitat. The area of each circle with its diameter printed in brackets represents the growth of a single microbe surviving human immunity system within 24 hours of entering the body. The danger to human beings varies proportionately with the toxicity, potency and growth attributed to a microbe shown in the figure below:



(Probability that microbe will overcome human immunity system)

A pharmaceutical company is contemplating the development of a vaccine against the most dangerous microbe. Which microbe should the company target in its first attempt?

| (a) P | (b) Q |  |
|-------|-------|--|
| (c) R | (d) S |  |

[CE, ME, CS 2011, 2 Marks (Set-1)]

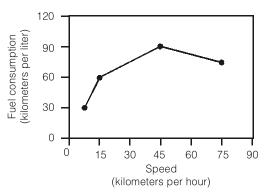
10. A transporter receives the same number of orders each day. Currently, he has some pending orders (backlog) to be shipped. If he uses 7 trucks, then at the end of the 4th day he can clear all the orders. Alternatively, if he uses only 3 trucks, then all the orders are cleared at the end of the 10th day. What is the minimum number of trucks required so that there will be no pending order at the end of the 5th day?

| (a) 4 | (b) 5                              |
|-------|------------------------------------|
| (c) 6 | (d) 7                              |
|       | [CE, ME, CS 2011, 2 Marks (Set-1)] |

11. There are two candidates P and Q in an election. During the campaign 40% of the voters promised to vote for P, and rest for Q. However, on the day of election 15% of the voters went back on their promise to vote for P and instead voted for Q. 25% of the voters went back on their promise to vote for Q and instead voted for P. Suppose, P lost by 2 votes, then what was the total number of voters?

|     |     | [EE, EC 2011, 1 Mark (Set-2)] |
|-----|-----|-------------------------------|
| (C) | 90  | (d) 95                        |
| (a) | 100 | (b) 110                       |

**12.** The fuel consumed by a motorcycle during a journey while travelling at various speeds is indicated in the graph below



The distance covered during four laps of the journey are listed in the table below:

|     | Distance     | Average speed         |  |
|-----|--------------|-----------------------|--|
| Lap | (kilometers) | (kilometers per hour) |  |
| Р   | 15           | 15                    |  |
| Q   | 75           | 45                    |  |
| R   | 40           | 75                    |  |
| S   | 10           | 10                    |  |

From the given data, we can conclude that the fuel consumed per kilometre was least during the lap

| . orbo |   |     |   |  |
|--------|---|-----|---|--|
| (a)    | Р | (b) | Q |  |
| (C)    | R | (d) | S |  |

[EE, EC 2011, 2 Marks (Set-2)]

- 13. Three friends, R, S and T shared toffee from a bowl. R took 1/3<sup>rd</sup> of the toffees, but returned four to the bowl. S took 1/4<sup>th</sup> of what was left but returned three toffees to the bowl. T took half of the remainder but returned two back into the bowl. If the bowl had 17 toffees left, how many toffees were originally there in the bowl?
  - (a) 38 (b) 31
  - (c) 48 (d) 41

```
[EE, EC 2011, 2 Marks (Set-2)]
```

- **14.** Given that f(y) = |y|/y, and q is any non-zero real number, the value of |f(q) f(-q)| is
  - (a) 0 (b) -1
  - (c) 1 (d) 2

[EE, EC 2011, 2 Marks (Set-2)]

- **15.** The sum of n terms of the series  $4 + 44 + 444 + \dots$  is
  - (a) (4/81) [10<sup>n + 1</sup> − 9n − 1]
  - (b)  $(4/81) [10^{n-1} 9n 1]$

#### MADE EASY

|                 |                     |                     | ER KEY              |                    |                  |
|-----------------|---------------------|---------------------|---------------------|--------------------|------------------|
| <b>1</b> . (d)  | <b>38.</b> (d)      | <b>75</b> . (d)     | <b>112.</b> (b)     | <b>149</b> . (b)   | <b>186</b> . (a) |
| <b>2.</b> (c)   | <b>39</b> . (b)     | <b>76</b> . (140)   | <b>113</b> . (a)    | <b>150</b> . (c)   | <b>187.</b> (c)  |
| <b>3</b> . (d)  | <b>40</b> . (a)     | <b>77</b> . (a)     | <b>114</b> . (a)    | <b>151</b> . (a)   | <b>188.</b> (b)  |
| <b>4</b> . (b)  | <b>41</b> . (a)     | <b>78</b> . (c)     | <b>115</b> . (32)   | <b>152.</b> (d)    | <b>189.</b> (b)  |
| <b>5</b> . (b)  | <b>42.</b> (16)     | <b>79.</b> (c)      | <b>116.</b> (c)     | <b>153.</b> (c)    | <b>190.</b> (b)  |
| <b>6</b> . (b)  | <b>43</b> . (d)     | <b>80.</b> (d)      | <b>117.</b> (c)     | <b>154</b> . (b)   | <b>191</b> . (b) |
| <b>7</b> . (d)  | <b>44.</b> (b)      | <b>81</b> . (c)     | <b>118</b> . (a)    | <b>155</b> . (a)   | <b>192.</b> (d)  |
| <b>8</b> . (a)  | <b>45</b> . (560)   | <b>82.</b> (C)      | <b>119.</b> (c)     | <b>156.</b> (d)    | <b>193</b> . (d) |
| <b>9</b> . (d)  | <b>46.</b> (d)      | <b>83.</b> (C)      | <b>120.</b> (c)     | <b>157</b> . (b)   | <b>194</b> . (c) |
| <b>10</b> . (c) | <b>47</b> . (b)     | <b>84. (</b> 1300)  | <b>121</b> . (3)    | <b>158.</b> (d)    | <b>195</b> . (c) |
| <b>11</b> . (a) | <b>48</b> . (b)     | <b>85.</b> (d)      | <b>122.</b> (d)     | <b>159</b> . (b)   | <b>196</b> . (d) |
| <b>12</b> . (b) | <b>49</b> . (45)    | <b>86</b> . (b)     | <b>123.</b> (b)     | <b>160.</b> (b)    | <b>197</b> . (b) |
| <b>13</b> . (c) | <b>50</b> . (c)     | <b>87</b> . (180)   | <b>124.</b> (d)     | <b>161</b> . (a)   | <b>198.</b> (b)  |
| 14. (d)         | <b>51</b> . (163)   | <b>88.</b> (d)      | <b>125</b> . (b)    | <b>162.</b> (d)    | <b>199</b> . (a) |
| <b>15</b> . (c) | <b>52.</b> (d)      | <b>89</b> . (b)     | <b>126</b> . (800)  | <b>163</b> . (a)   | <b>200</b> . (c) |
| <b>16</b> . (a) | <b>53</b> . (a)     | <b>90</b> . (25)    | <b>127</b> . (a)    | <b>164</b> . (c)   | <b>201</b> . (a) |
| <b>17</b> . (b) | <b>54</b> . (16)    | <b>91</b> . (a)     | <b>128.</b> (c)     | <b>165</b> . (c)   | <b>202</b> . (a) |
| <b>18</b> . (b) | <b>55</b> . (d)     | <b>92</b> . (a)     | <b>129</b> . (b)    | <b>166</b> . (a)   | <b>203</b> . (b) |
| <b>19</b> . (c) | <b>56.</b> (b)      | <b>93</b> . (d)     | <b>130</b> . (c)    | <b>167</b> . (a)   | <b>204</b> . (a) |
| <b>20</b> . (a) | <b>57.</b> (d)      | <b>94</b> . (c)     | <b>131.</b> (2.064) | <b>168</b> . (d)   | <b>205</b> . (d) |
| <b>21</b> . (d) | <b>58</b> . (4)     | <b>95.</b> (0.4896) | <b>132.</b> (b)     | <b>169.</b> (b)    | <b>206.</b> (b)  |
| <b>22</b> . (a) | <b>59</b> . (20000) | <b>96.</b> (b)      | <b>133.</b> (b)     | <b>170.</b> (d)    | <b>207</b> . (c) |
| <b>23</b> . (c) | <b>60.</b> (0.81)   | <b>97</b> . (c)     | <b>134</b> . (280)  | <b>171</b> . (c)   | <b>208</b> . (b) |
| <b>24</b> . (d) | <b>61</b> . (a)     | <b>98.</b> (4.54)   | <b>135.</b> (c)     | <b>172.</b> (b)    | <b>209</b> . (c) |
| <b>25</b> . (a) | <b>62</b> . (495)   | <b>99</b> . (b)     | <b>136.</b> (b)     | <b>173.</b> (c)    | <b>210</b> . (c) |
| <b>26</b> . (d) | <b>63</b> . (c)     | <b>100</b> . (b)    | <b>137</b> . (c)    | <b>174.</b> (a)    | <b>211</b> . (d) |
| <b>27</b> . (a) | <b>64</b> . (b)     | <b>101</b> . (b)    | <b>138</b> . (a)    | <b>175</b> . (7)   | <b>212.</b> (c)  |
| <b>28</b> . (d) | <b>65</b> . (b)     | <b>102</b> . (a)    | <b>139</b> . (c)    | <b>176</b> . (120) | <b>213</b> . (c) |
| <b>29</b> . (b) | <b>66</b> . (22)    | <b>103</b> . (d)    | <b>140.</b> (c)     | <b>177.</b> (c)    | <b>214.</b> (b)  |
| <b>30</b> . (a) | <b>67</b> . (b)     | <b>104</b> . (4536) | <b>141</b> . (d)    | <b>178</b> . (b)   | <b>215</b> . (d) |
| <b>31</b> . (c) | <b>68</b> . (96)    | <b>105</b> . (d)    | <b>142.</b> (c)     | <b>179</b> . (c)   | <b>216</b> . (a) |
| <b>32</b> . (d) | <b>69</b> . (d)     | <b>106</b> . (a)    | <b>143</b> . (c)    | <b>180</b> . (c)   | <b>217</b> . (d) |
| <b>33</b> . (c) | <b>70</b> . (850)   | <b>107</b> . (c)    | <b>144.</b> (c)     | <b>181</b> . (a)   | <b>218</b> . (a) |
| <b>34</b> . (b) | <b>71</b> . (48)    | <b>108</b> . (c)    | <b>145.</b> (b)     | <b>182.</b> (c)    | <b>219.</b> (b)  |
| <b>35</b> . (b) | <b>72</b> . (6)     | <b>109</b> . (b)    | <b>146.</b> (d)     | <b>183</b> . (d)   | <b>220.</b> (c)  |
| <b>36</b> . (c) | <b>73.</b> (b)      | <b>110</b> . (8)    | <b>147.</b> (d)     | <b>184</b> . (d)   | <b>221</b> . (c) |
| <b>37</b> . (c) | <b>74.</b> (c)      | <b>111</b> . (a)    | <b>148.</b> (c)     | <b>185</b> . (c)   | <b>222.</b> (a)  |
|                 |                     |                     |                     |                    |                  |

#### **EXPLANATIONS**

#### 1. (d)

Using the set theory formula

n(A) : Number of people who play hockey = 15 n(B) : Number of people who play football = 17 n (A  $\cap$  B): Persons who play both hockey and football =10 n (A  $\cup$  B): Persons who play either hockey or

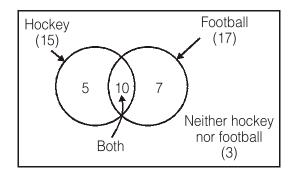
football or both Using the formula

 $n (A \cup B) = n(A) + n(B) - n(A \cap B)$ n (A \cup B) = 15 + 17 - 10 = 22

Thus people who play neither hockey nor football = 25 - 22 = 3

#### **Alternative Method**

Refer to Venn diagram given below:



Number of people playing nither of the two games is equal to 3.

#### 2. (c)

137 + 276 = 435This an addition on base 8. Hence, 731 + 672(8) = 1623

#### Alternative Method

7 and 6 added is becoming five means the given two numbers are added on base 8.

$$\frac{(137)_8}{+(276)_8}\\\frac{+(276)_8}{(435)_8}$$

Hence we have to add the another two given set of numbers also on base 8.

 $(731)_8$ + $(672)_8$  $(1623)_8$ 

Hence the overall problem was based on identyfying base, which was 8, and adding number on base 8.

3. (d)

Per day work or rate of 5 skilled workers =  $\frac{1}{20}$ 

 $\Rightarrow$  Per day work or rate of one skill worker

$$=\frac{1}{5\times 20}=\frac{1}{100}$$

Similarly Per day work or rate of 8 semiskilled

workers = 
$$\frac{1}{25}$$

 $\Rightarrow$  Per day work or rate of one semi-skill worker

$$=\frac{1}{8\times25}=\frac{1}{200}$$

And per day work or rate of 10 unskilled workers

$$=\frac{1}{30}$$

⇒ Per day work or rate of one semi-skill worker

$$=\frac{1}{10\times 30}=\frac{1}{300}$$

Thus total per day work of 2 skilled, 6 semiskilled and 5 unskilled workers

$$= \frac{2}{100} + \frac{6}{200} + \frac{5}{300} = \frac{12 + 18 + 10}{600}$$
$$= \frac{40}{600} = \frac{1}{15}$$

Thus time to complete the work is 15 days.

#### Alternative Method

Let one day work of skilled semi-skilled and unskilled worker be a, b, c units respectively.  $5a \times 20 = 8b + 25 = 10c \times 30 =$  Total unit of work

$$100a = 200b = 300c$$
  
 $a = 2b = 3c$ 

$$\Rightarrow$$
 b =  $\frac{a}{2}$  and c =  $\frac{a}{3}$ 

Given that 2 skilled, 6 semi-skilled and 5 unskilled workers are working. Let they finish the work in 'x' days.

(2a + 6b + 5c)x = 5a + 20= Total units of work  $\left(2a + 3a + \frac{5}{3}a\right)x = 5a \times 20$ 

$$\frac{20a}{3}x = 5a \times 20$$
$$x = 15 \text{ days}$$

4.

(b)

We have to make 4 digit numbers, so the number should be start with 3 or 4, two cases possible;

Case (1) thousands digit is 3 Now other three digits may be any of 2, 2, 3, 3, 4, 4, 4, 4. (a) Using 2, 2, 3

$$\Rightarrow 223, 232, 322 \dots$$

 $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ 

(b) Using 2, 2, 4  $\Rightarrow$  224, 242, 422

$$\left(\frac{3!}{2!}\right) = 3$$
 numbers are possible

(c) Using 2, 3, 3  $\Rightarrow$  233, 323, 332

$$\left(\frac{3!}{2!} = 3 \text{ numbers are possible}\right)$$

(d) Using 2, 3, 4  $\Rightarrow$  234, 243, 324, 342, 423, 432

(3! = 6 numbers are possible)

(e) Using 2, 4, 4  $\Rightarrow$  244, 424, 442

 $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ 

(f) Using 3, 3, 4  $\Rightarrow$  334, 343, 433

 $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ 

(g) Using 3, 4, 4  $\Rightarrow$  344, 434, 443  $\left(\frac{3!}{2!} = 3 \text{ numbers are possible}\right)$ (h) Using 4, 4, 4  $\Rightarrow$  444

$$\left(\frac{3!}{3!}=1 \text{ numbers are possible}\right)$$

Total 4 digit numbers in case 1 = 3 + 3 + 3 + 6 + 3 + 3 + 3 + 1 = 25

**Case (2)** thousands digit is 4; Now other three digits may be any of 2, 2, 3, 3, 3, 4, 4, 4.

(a) Using 2, 2, 3  $\Rightarrow$  223, 232, 322

 $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ (b) Using 2, 2, 4  $\Rightarrow$  224, 242, 422  $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ (c) Using 2, 3, 3  $\Rightarrow$  233, 323, 332  $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ (d) Using 2, 3,  $4 \Rightarrow 234, 243, 324, 342,$ 423, 432  $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ (e) Using 2, 4, 4  $\Rightarrow$  244, 424, 442  $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ (f) Using 3, 3, 3  $\Rightarrow$  333  $\left(\frac{3!}{2!}=1 \text{ number is possible}\right)$ (g) Using 3, 3,  $4 \Rightarrow 334, 343, 433$  $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ (h) Using 3, 4, 4  $\Rightarrow$  344, 434, 443  $\left(\frac{3!}{2!}=3 \text{ numbers are possible}\right)$ (i) Using 4, 4, 4  $\Rightarrow$  444  $\left(\frac{3!}{2!}=1 \text{ number is possible}\right)$ Total 4 digit numbers in case 2 = 3 + 3 + 3 + 6+3+3= 1 + 3 + 1 = 26Thus total 4 digits numbers using case (1) and case(2) = 25 + 26 = 51\* Alternative Method / Shortcut method As the number is greater than 3000. So thousand's place can be tiehr 3 or 4.

Let's consider the following two cases

**Case (I)** When thousand's place is 3. 3 a b c